
Semi-parametric dynamic contextual pricing

Virag Shah — Jose Blanchet — Ramesh Johari
Uber Inc, Stanford University

virag@uber.com

December 5, 2019

1 / 15



Dynamic pricing

I Several e-commerce platforms have access to data describing history of
different users and types of different products.

I Platforms can leverage this information for pricing, and optimizing revenue.

I This requires learning online the mapping from user context to optimal
price, efficiently.

2 / 15



Distinguishing features of our setting

We believe that the following are important features and ours is the first work to
incorporate all of them.

1. Binary feedback: Customer buys the item, or she does not. Her true
valuation is not known.

2. Contextual: Platform needs to learn the relationship between the covariates
and the expected valuation.

3. Non-parametric residuals: The residual uncertainty in valuation given
covariates is assumed non-parametric.

3 / 15



Summary of Related Work

Contextual Non-parametric residuals Binary feedback

Kleinberg and Leighton (2003) X X
Javanmard and Nazerzadeh (2019) X X

Qiang and Bayati (2019) X X
Cohen et al. (2016b); Mao et al. (2018) X X

Ban and Keskin (2019)
X X
X X

Nambiar et al. (2019) X X
Our work X X X

Table 1: This table compares our results with prior work along three dimensions: (1) incorporating
contextual information; (2) modeling the distribution of residual uncertainty (given the context, where
appropriate) as non-parametric; and (3) receiving only binary success/failure feedback from each
transaction.

as its nodes, (c) the action involves pulling an arm, and at each time the reward at each neighbor
of the pulled arm is revealed. However, in our setting, it is important to model the set of prices,
and thus the set of covariate-vector-to-price mappings as described above, as a continuous set since
a constant error in price leads to linear regret. While in our DEEP-C policy we discretize the set
of covariate-vector-to-price mappings into a finite set of arms (which scale with time horizon), the
above assumptions are still not met due to the following. Each arm in our setting corresponds to a
subset of prices/actions. The subset of arms for which the reward is revealed at time t depends on
the covariate xt, and the exact price pt from the above subset. Thus, the assumption of a pre-defined
graph structure is not satisfied.

2 Preliminaries

In this section we first describe our model and then our objective, which is to minimize regret relative
to a natural oracle policy.

2.1 Model

At each time t 2 {1, 2, . . . , n}, we have a new user arrival with covariate vector Xt taking values
in Rd for d � 1. Throughout the paper all vectors are encoded as column vectors. The platform
observes Xt upon the arrival of the user. The user’s reservation value Vt 2 R is modeled as

ln Vt = ✓|0Xt + Z 0
t, (1)

where ✓0 2 Rd is a fixed unknown parameter vector, and Z 0
t for t 2 {1, 2, . . . , n} captures the

residual uncertainty in demand given covariates.

Similar to the linear model Vt = ✓|0Xt +Z 0
t, this model is quite flexible in that linearity is a restriction

only on the parameters while the predictor variables themselves can be arbitrarily transformed.
However, our formulation additionally has the feature that it ensures that Vt > 0 for each t, a key
practical consideration. We conjecture that unlike our model, the linear model Vt = ✓|0Xt + Z 0

t does
not admit a learning algorithm with Õ(

p
n) regret. This is due to censored nature of feedback, the

structure of revenue as a function of price, and our non-parametric assumption on the distribution
of Z 0

t as described below. Also, exponential sensitivity of the valuation with respect to covariate
magnitudes can be avoided by using a logarithmic transformation of the covariates themselves.
More generally, one may augment our approach with a machine learning algorithm which learns an
appropriate transformation to fit the data well. In this paper, however, we focus on valuation model as
given by (1).

3

– Look at our NeurIPS 2019 paper for further details.

4 / 15



Basic Framework
I Discrete times 1, 2, . . . , n, one user arrives per time step

I Each user is shown one product, which is ex-ante fixed

I Let Vt be the value tth user assigns to the product.

I Let pt be the price set by the platform.

I The user buys the product if pt ≤ Vt.

I Platform does not know or observe Vt, but has access to covariates Xt ∈ Rd

which may describe user’s history and product’s type

I Goal: set prices p1, . . . , pn so as to maximize
∑n

t=1 pt1 {pt ≤ Vt}.
5 / 15



The Data available till time t

I Input: {Xi, pi}t−1
i=1.

Xt : covariate. pt: price

I Output: {Yi}t−1
i=1, where

Yi =

{
1 if Vi ≥ pi

0 otherwise
.

In other words, Yi captures whether ith was success or failure.

6 / 15



The Semi-parametric Model for Valuation

I We let
lnVi = θᵀ0Xi + Zi,

θ0: unknown parameters, Zi: unknown residuals/noise.

I Residuals Zi are i.i.d. with unknown (non-parametric) distribution.

I Covariates Xi i.i.d. with unknown distribution.

7 / 15



Exploration-exploitation tradeoff

I Exploration: Experiment with prices pt to better learn θ0 and distribution of
noise Z

I Exploitation: Choose price pt to maximize revenue.

I Recall, the goal is to maximize platform’s long term revenue:
Γn =

∑n
t=1 pt1 {pt ≤ Vt}.

8 / 15



The Oracle

I We study regret against the Oracle which knows θ0 and the distribution of
Z.

– Optimal policy for the Oracle :

I Let F (z) = zP(Z ≥ ln z), and z∗ = arg sup
z
F (z).

I Here, F (z) would be the revenue function if covariates Xt were 0.

Proposition

The following pricing policy maximizes revenue for the Oracle: At each time t set
price p∗t such that

ln p∗t = θᵀ0Xt + ln z∗.

9 / 15



Designing Optimal Bandit Algorithm: Key Ideas

I Recall, revenue maximizing policy for Oracle: ln p∗t = θᵀ0Xt + ln z∗.

I For each z and θ, think of (z, θ) as an arm (i.e. a potential option). Pulling
arm (z, θ) is equivalent to setting price pt such that ln pt = θᵀXt + ln z.

I (z, θ) ∈ Rd+1: Curse of dimensionality?

I Important observation: Given Xt, for each choice of price pt we
simultaneously obtain information about the expected revenue for a range of
pairs (z, θ).

10 / 15



DEEP-C Pricing Algorithm: Summary

DEEP-C: Dynamic Experimentation and Elimination of Prices - with Covariates.

I Maintain a set A(t) of ‘active arms’ (z, θ) at each time.

I At time t, observe Xt and compute the set of active prices:

P (t) = {pt : ∃(z, θ) ∈ A(t) s.t. ln pt = θᵀXt + ln z}.

I Choose price pt at random from P (t).

I Observe the revenue obtained. Eliminate (z, θ)’s from A(t) for which there
is enough information about sub-optimality.

11 / 15



The main result

Under some smoothness, compactness, independence, etc. assumptions, the
following holds.

Theorem
The expected regret satisfies the following: there exists a constant c such that

E[Rn] = O
(
dc
√
n
)
.

12 / 15



Reducing time-complexity by leveraging sparsity

I DEEP-C resolves sample complexity part, but computational complexity
scales poorly with d.

I We assume and leverage sparsity in θ0 to resolve computational complexity

I Decoupled DEEP-C:
I Phase 1: Choose prices at random. Estimate θ0 using sparse

semi-parametric regression.
I Phase 2: Use a one-dimensional version of DEEP-C to estimate z∗ and

maximize revenue.

I Sparse DEEP-C: No decoupling. Simultaneously estimate θ0 using sparse
semi-parametric regression and use DEEP-C to estimate z∗ and maximize
revenue.

13 / 15



Regret comparison of the policies.

(a) DEEP-C, d = 2. (b) DEEP-C variants, d = 2 (c) DEEP-C variants,
d = 100

14 / 15



Conclusions

I To learn via price experimentation, we do not need to make parametric
(probit/logistic/generalized-linear type) assumptions.

I We have a provably efficient algorithm which works under a ‘very general’
setting.

15 / 15


