Semi-parametric dynamic contextual pricing

Virag Shah — Jose Blanchet — Ramesh Johari
Uber Inc, Stanford University
virag@uber.com

December 5, 2019

1/15

Dynamic pricing

» Several e-commerce platforms have access to data describing history of
different users and types of different products.

» Platforms can leverage this information for pricing, and optimizing revenue.

» This requires learning online the mapping from user context to optimal
price, efficiently.

2/15

Distinguishing features of our setting

We believe that the following are important features and ours is the first work to
incorporate all of them.

1. Binary feedback: Customer buys the item, or she does not. Her true
valuation is not known.

2. Contextual: Platform needs to learn the relationship between the covariates
and the expected valuation.

3. Non-parametric residuals: The residual uncertainty in valuation given
covariates is assumed non-parametric.

3/15

Summary of Related Work

Contextual | Non-parametric residuals | Binary feedback

Kleinberg and Leighton (2003) v v

Javanmard and Nazerzadeh (2019) v v
Qiang and Bayati (2019) v v

Cohen et al. (2016b); Mao et al. (2018) v v
Ban and Keskin (2019) Y Y

v v
Nambiar et al. (2019) v v

Our work v v v

— Look at our NeurlPS 2019 paper for further details.

4/15

Basic Framework
» Discrete times 1,2,...,n, one user arrives per time step

» Each user is shown one product, which is ex-ante fixed
» Let V; be the value ¢*" user assigns to the product.

» Let p; be the price set by the platform.

» The user buys the product if p, < V.

» Platform does not know or observe V;, but has access to covariates X; € R?
which may describe user's history and product’s type

» Goal: set prices py,...,p, so as to maximize Y ;- p:1{p: < V;}.

5/15

The Data available till time ¢

> Input: {X;, pi}'Zl.
X; : covariate. p;: price

» Output: {Y;}!Z], where

Y, = LifV; Z.Pz‘
0 otherwise

In other words, Y; captures whether it" was success or failure.

6/15

The Semi-parametric Model for Valuation

> We let

6p: unknown parameters, Z;: unknown residuals/noise.

» Residuals Z; are i.i.d. with unknown (non-parametric) distribution.

» Covariates X; i.i.d. with unknown distribution.

7/15

Exploration-exploitation tradeoff

» Exploration: Experiment with prices p; to better learn 6, and distribution of
noise Z

» Exploitation: Choose price p; to maximize revenue.

» Recall, the goal is to maximize platform’s long term revenue:
L= pl{p <Vi}.

8/15

The Oracle

» We study regret against the Oracle which knows 6, and the distribution of
A

— Optimal policy for the Oracle :
» Let F(z) = 2P(Z > 1Inz), and z* = argsup F(z).

» Here, F'(z) would be the revenue function if covariates X; were 0.
Proposition
The following pricing policy maximizes revenue for the Oracle: At each time t set
price p; such that

Inp; =605 X; +1Inz"

9/15

Designing Optimal Bandit Algorithm: Key ldeas

» Recall, revenue maximizing policy for Oracle: Inp} = 6] X; + In z*.

» For each z and 6, think of (z,6) as an arm (i.e. a potential option). Pulling
arm (z,0) is equivalent to setting price p; such that Inp, = 07X, + In z.

» (2,0) € R¥1: Curse of dimensionality?

» Important observation: Given X, for each choice of price p; we
simultaneously obtain information about the expected revenue for a range of
pairs (z,0).

10/15

DEEP-C Pricing Algorithm: Summary

DEEP-C: Dynamic Experimentation and Elimination of Prices - with Covariates.

» Maintain a set A(t) of ‘active arms’ (z,0) at each time.

» At time t, observe X; and compute the set of active prices:
P(t) ={p:: 3(z,0) € A(t) st. Inp, =07X; +1nz}.

» Choose price p; at random from P(t).

» Observe the revenue obtained. Eliminate (z,6)’s from A(t) for which there
is enough information about sub-optimality.

11/15

The main result

Under some smoothness, compactness, independence, etc. assumptions, the
following holds.

Theorem
The expected regret satisfies the following: there exists a constant ¢ such that

E[R,] = O (dV/n) .

12/15

Reducing time-complexity by leveraging sparsity

» DEEP-C resolves sample complexity part, but computational complexity
scales poorly with d.

» We assume and leverage sparsity in 6, to resolve computational complexity

» Decoupled DEEP-C:

» Phase 1: Choose prices at random. Estimate 6y using sparse
semi-parametric regression.

» Phase 2: Use a one-dimensional version of DEEP-C to estimate z* and
maximize revenue.

» Sparse DEEP-C: No decoupling. Simultaneously estimate 6, using sparse
semi-parametric regression and use DEEP-C to estimate z* and maximize
revenue.

13/15

Regret comparison of the policies.

4000 3000

X ~ o X 3000
—— 98th-Percentile, DEEP-C :2::_: z::::: g: ':";gg: ¢ -~ 95th-Pergentile, Decoupled DEEP-C
3000 Decoupléd DEEP-C 2500
2000 Sparse DEEP-C 2000 e e
5 E R WSS S = e
2000 o ¥V | T T 2 1500 [oS I SRS
& 4 1000 g
o
1000 1000
500
0 0 0
0.2 07 12 17 22 1 3 5 7 9 1 3 5 7 9
Y Y

(a) DEEP-C, d = 2. (b) DEEP-C variants, d =2 (c) DEEP-C variants,
d =100

14/15

Conclusions

» To learn via price experimentation, we do not need to make parametric
(probit/logistic/generalized-linear type) assumptions.

» We have a provably efficient algorithm which works under a ‘very general’
setting.

15/15

