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Abstract
Online two-sided matching markets such as Q&A forums (e.g. StackOver�ow, �ora) and online labour platforms (e.g.

Upwork) critically rely on the ability to propose adequate matches based on imperfect knowledge of the two parties to be

matched. �is prompts the following question: Which matching recommendation algorithms can, in the presence of such

uncertainty, lead to e�cient platform operation?

To answer this question, we develop a model of a task / server matching system. For this model, we give a necessary

and su�cient condition for an incoming stream of tasks to be manageable by the system. We further identify a so-called

back-pressure policy under which the throughput that the system can handle is optimized. We show that this policy achieves

strictly larger throughput than a natural greedy policy. Finally, we validate our model and con�rm our theoretical �ndings

with experiments based on logs of Math.StackExchange, a StackOver�ow forum dedicated to mathematics.

1 INTRODUCTION
Online platforms that enable matches between trading partners in two-sided markets have recently blossomed in

many areas: LinkedIn and Upwork facilitate matches between employers and employees; Uber allows matches

between passengers and car drivers; Airbnb and Booking.com connect travelers and housing facilities; �ora

and Stack Exchange facilitate matches between questions and either answers, or experts able to provide them.

All these systems crucially rely on the ability to propose adequate matches based on imperfect knowledge of

the characteristics of the two parties to be matched. For example, in the context of online labour platforms, there

is uncertainty about both the skill sets of candidate employees and the job requirements. Similarly, in the context

of online Q&A platforms, there is uncertainty about both question types and users’ ability to provide answers.

�is naturally leads to the following question: which matching recommendation algorithms can, in the presence
of such uncertainty, lead to e�cient platform operation? A natural measure of e�ciency is the throughput that the

platform achieves, i.e. the rate of successful matches it allows. To address this question, one thus needs �rst to

characterize fundamental limits on the achievable throughput.

In this paper, we progress towards answering these questions as follows.

First, we propose a simple model of such platforms, which features a static collection of servers, or experts

on the one hand, and a continuous stream of arrivals of tasks, or jobs, on the other hand. In our model, the

platform’s operation consists of servers iteratively a�empting to solve tasks. A�er being processed by some

server, a task leaves the system if solved; otherwise it remains till successfully treated by some server. To model

uncertainty about task types, we assume that for each incoming task we are given the prior distribution of this

task’s “true type”. Servers’ abilities are then represented via the probability that each server has to solve a task of

given type a�er one a�empt at it.

In a Q&A platform scenario, tasks are questions, and servers are experts; a server processing a task corresponds

to an expert providing an answer to a question. A task being solved corresponds to an answer being accepted. In

an online labour platform, tasks could be job o�ers, and a server may be a pool of workers with similar abilities.

A server processing a task then corresponds to a worker being interviewed for a job, and the task is solved if the

interview leads to a hire. We could also consider the dual interpretation when the labour market is constrained
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by workers rather than job o�ers. �en a task is a worker seeking work, while a server is a pool of employers

looking for hires.

An important feature of our model consists in the fact that when a task’s processing does not lead to failure, it

does however a�ect uncertainty about the task’s type. Indeed, the a posteriori distribution of the task’s type

a�er a failed a�empt on it by some server di�ers from its prior distribution. For instance in a Q&A scenario, a

question which an expert in Calculus failed to answer either is not about Calculus, or is very hard.

For our model, we then determine necessary and su�cient conditions for an incoming stream of task arrivals

to be manageable by the servers, or in other words, determine achievable throughputs of the system. In the

process we introduce candidate policies, in particular the greedy policy according to which a server choses to

serve tasks for which its chance of success is highest. �is scheduling strategy is both easy to implement and

is based on a natural motivation. Surprisingly perhaps, we show that it is not optimal in the throughput it can

handle. In contrast, we introduce a so-called backpressure policy inspired from the wireless networking literature

[33], which we prove to be throughput-optimal.

To validate our modeling and theoretical results, we analyze logs from Math.StackExchange, a StackOver�ow

forum specializing on mathematics. Our data analysis corroborates several aspects of our model, notably the

modeling of uncertainty about task types as a prior on task type, together with the modeling of server ability

through their success probability on each task type. Numerical experiments based on Math.StackExchange data

analysis con�rm the theoretical results, namely that our backpressure policy can achieve signi�cantly higher

throughputs than other baseline policies.

We summarize contributions of this paper as follows:

• We propose a new model of a generic task-expert system that allows for uncertainty of task types,

heterogeneity of skills, and recurring a�empts of experts in solving tasks.

• We provide a full characterization of the stability region, or sustainable throughputs, of the task-expert

system under consideration. We establish that a particular backpressure policy is throughput-optimal, in

the sense that it supports maximum task arrival rate under which the system is stable.

• We show that there exist instances of task-expert systems under which simple matching policies such as

a natural greedy policy and a random policy can only support a much smaller maximum task arrival rate,

than the backpressure policy.

• We report the results of empirical analysis of the popular Math.StackExchange Q&A platform which

establish heterogeneity of skills of experts, with experts knowledgeable across di�erent types of tasks and

others specialized in particular types of tasks. We also show numerical evaluation results that con�rm

the bene�ts of the backpressure policy on greedy and random matchmaking policies.

�e remainder of the paper is structured as follows. Section 2 presents our system model. In Section 3, we

present results for two baseline matchmaking policies, namely Greedy and Random, and a characterization of

achievable throughputs under Random. Section 4 presents the characterization of task arrival rates that can be

supported under which the system is stable and prove the superiority of backpressure policy over Random and

Greedy. In Section 5, we present our experimental results. Related work is discussed in Section 6. We conclude in

Section 7. Proofs of the results are provided in the Section 8.

2 SYSTEM MODEL
We denote by C the set of types that tasks can take, and assume |C | < +∞. We let C denote the set of probability

distributions on C . We assume that each incoming task has an associated type which is not observed. Instead,

the probability distribution z = {zc }c ∈C ∈ C of the task’s type is provided. �roughout, we will refer to such

distributions as mixed types. �e rationale for assuming that such mixed types are available is that they represent

side information revealed upon task arrival (e.g. for a question in a Q&A forum, side information could be its
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text and associated tags; in online labor platform this could be a job description and prior knowledge about the

company posting the o�er).

We let S be a set of servers (or experts) present in the system. For each s ∈ S , c ∈ C , ps,c denotes the probability

that server s solves a task of type c a�er processing it. We assume that a given task may be inspected several

times by a given server and that the outcomes success / failure are independent at each inspection. �is can

be justi�ed if a label s in fact represents a collection of experts with similar abilities, in which case multiple

processings by s correspond to processing by distinct individual experts.

We make the following statistical assumptions. �e subsequent mixed types Zi of incoming tasks are assumed

i.i.d., taking values in a countable subsetZ of C, and we let πz = P (Zi = z) for all z ∈ Z. Tasks arrive at a rate

of λ per time unit on average. Finally, the time for server s to complete an a�empt on a job takes on average

1/µs time units, and such a�empt durations are i.i.d.. All involved sources of randomness are independent. For

simplicity we assume more speci�cally that tasks arrive at the instants of a Poisson process with intensity λ, and

that the time for server s to complete an a�empt at a task follows an Exponential distribution with parameter µs .

�ese assumptions will imply that the system state at any given time t can be represented as a Markov process,

which simpli�es analysis, but is not essential for the throughput optimality properties that concern us here.

We now describe direct consequences of the assumptions just made. When server s processes a task with

mixed type z ∈ Z, then the probability that it fails is given by

ψs (z) =
∑
c ∈C

zc (1 − ps,c ). (1)

Moreover, conditional on such failure, Bayes formula readily implies that the mixed type of the job then becomes

ϕs (z) =

{
zc (1 − ps,c )

ψs (z)

}
c ∈C

(2)

�ese two functions will be instrumental in the sequel to describe policies of interest. �ey will also be used

to characterize arrival rates λ for which the system can be stabilized, i.e. for which there exists a scheduling

policy which induces a stationary regime of the system’s behavior. �is is our primary concern in this work:

indeed for a stable system the long term task resolution rate coincides with the task arrival rate λ, and thus

throughput-optimal policies must make the system stable whenever this is possible.

We close the section with additional assumptions and notations.

We assume thatZ is closed under ϕs (·), i.e., for each z ∈ Z, ϕs (z) ∈ Z. �is loses no generality, as the closure

of a countable set with respect to a �nite number of maps ϕs remains countable. At any time t let Nz (t ) represent

the number of tasks of mixed-type z present in the system and N (t ) = {Nz (t )}z∈Z . We also let z (s, t ) denote the

mixed type of that task that server s works on at time t . For strategies such that the servers select which task to

handle based uniquely on the vector N (t ), the process {N (t )}t ≥0 forms a continuous-time Markov chain (CTMC)

[6]. �e policies considered in this paper are studied by analyzing the associated CTMC.

We allow a task to be assigned to multiple experts at a given time. Further, we allow pre-emptive service, i.e.,

an expert may drop service of a task should a new task arrive into a system or an existing task receive a response.

3 BASELINE POLICIES
We consider a natural Greedy policy where each expert is assigned a task which best suits its skills, i.e., among

the outstanding tasks, an expert s is assigned a task of a mixed-type z which minimizesψs (z). A question arises:

does a myopic Greedy policy optimize the long term throughput in a stabilizable system? We will show via an

example that the answer to this question is negative. We also consider a Random policy, where each expert is

assigned a task chosen uniformly at random and characterize its stability region. We provide example scenarios

where both Greedy and Random have stability regions which are equivalent, and yet strictly sub-optimal.
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3.1 Greedy Policy
De�nition 3.1 (Greedy Policy). A policy is Greedy if given the system state each expert is assigned an outstanding

task which maximizes its success probability, i.e., for each N such that |N | > 0 we have

z (s ) ∈ As (N ) = arg min

z :Nz>0

ψs (z),

where ties could be broken arbitrarily, e.g., uniformly at random among this set.

If ties are broken uniformly at random then the transition rates for the CTMC under greedy policy are given

as follows. Let q(n,n′) be the transition rate from state n to state n′. Let ez denote the vector with all coordinates

equal to 0 except for the z-coordinate which equals 1. Fix a state n. For each z ∈ Z we have

q(n,n + ez ) = λπz ,

q(n,n − ez ) =
∑

s :z∈As (N )

µs (1 −ψs (z))
1

|As (N ) |
,

q(n,n − ez + eϕs (z ) ) =
∑

s :z∈As (N )

µsψs (z)
1

|As (N ) |
.

Transition rate q(n,n′) for each (n,n′) which is not as given above is equal to 0.

We will consider the following task-expert system instance.

De�nition 3.2 (Two types-two experts system). Suppose that there are two task typesC = {c1, c2} and two experts

S = {s1, s2}. Each arrival is equally likely to be of both types, i.e., πz′ = 1 where z ′ satis�es z ′c = 1/2 for each

c ∈ C , and πz = 0 if z , z ′. Both experts provide responses at unite rate, i.e., µs = 1 for each s . Further, for class

c1 we have ps,c1
= 1 for each s ∈ S , and for class c2 we have ps1,c2

= a < 1, and ps2,c2
= 0. We refer to such a

task-expert system as a two types-two experts system with parameter a.

For this system, if a task of mixed-type z ′ receives a failure from either of the experts, then its mixed type

becomes z ′′ where z ′′c1

= 0 and z ′′c2

= 1. �us, it is su�cient to assume thatZ = {z ′, z ′′} where z ′c =
1

2
for each

c ∈ C , and z ′′c = 1{c = c2}. Further, it is easy to check thatψs1
(z ′) = (1 − a)/2,ψs1

(z ′′) = 1 − a,ψs2
(z ′) = 1/2, and

ψs2
(z ′′) = 1. We then have the following result (its proof, as that of the other stability results in the article, is

established through the identi�cation of suitable Lyapunov functions, and given in the Section 8).

Theorem 3.3. For a two types-two experts system with parameter a as de�ned in De�nition 3.2, the system under
Greedy is stable if and only if λ < 4a/(2 + a).

3.2 Random Policy
De�nition 3.4 (Random Policy). A policy is Random if each expert s is assigned a task chosen uniformly at

random from the pool of outstanding tasks.

�is policy is particularly easy to implement as it does not require knowledge of any system parameter. �e

following theorem provides a stability conditions for this policy.

Theorem 3.5. Under Random policy, the system is stable if and only if the following holds:

λ < *
,

∑
c ∈C

∑
z∈Z zcπz∑
s ∈S µsps,c

+
-

−1

,

Following corollary easily results from the above theorem.
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Corollary 3.6. Consider a two types-two experts system with parameter a as de�ned in De�nition 3.2. �e system
is stable under Random policy if and only if λ < 4a/(2 + a).

3.3 Sub-optimality of Greedy and Random
�e result in Corollary 3.6 implies that for the two types-two experts system with parameter a considered in

�eorem 3.3, Greedy policy performs not be�er than Random policy. Further, we show in the next section,

via �eorem 4.1 and Corollary 4.4, that there exists a policy which achieves optimal stability region which is

signi�cantly larger than that achieved by Greedy and Random. In particular, the stability threshold for task

arrival rates under optimal policy can be up to 5/4 times (namely, when a = 1/2) that under either Greedy or

Random.

While it is intuitive that Random may perform poorly as compared to an optimal policy, it is somewhat counter

intuitive that Greedy may perform as sub-optimally as Random. �e reason for the poor performance of Greedy

can be explained as follows. In the two types-two experts system, we have a �exible expert, i.e. an expert for

tasks of all pure-types, and a specialized expert, i.e. an expert only for pure-type c1. Under Greedy policy, all

experts prioritize the newly arriving tasks as it optimizes the probability of achieving success in the short term.

However, a larger long-term throughput could be achieved if the �exible expert could focus more on the lagging

tasks, i.e., the tasks of pure-type c2.

4 OPTIMAL STABILITY
Main goal of this section is to provide necessary and su�cient conditions for stability of the system. We provide

a policy, called backpressure policy, which stabilizes the system when the su�cient conditions are satis�ed.

We obtain stability conditions via capacity constraints and �ow conservation constraints which capture the

�ow of tasks from one type to another upon service by an expert. For instance, if νs,z represents the �ow of tasks

of mixed-type z served by expert s , a fraction 1 −ψs (z) of it leaves the system due to success while the rest gets

converted into a �ow of typeϕs (z). �e total arrival rate of �ow of mixed-type z, i.e., λπz+
∑

s ∈S,z′∈ϕ−1

s (z ) νs,z′ψs (z
′),

must match the total service rate, i.e.,

∑
s ∈S νs,z . Further, the total �ow service rate expert s , i.e.,

∑
z∈Z νs,z , must

be less than its service capacity µs . �e following is the main result of this section. For a proof see Section 8.3

Theorem 4.1. Suppose there exists s such that minc ps,c > 0. If there exist non-negative real numbers νs,z , for
s ∈ S , and z ∈ Z and positive real numbers δs , for s ∈ S such that the following hold:

∀z ∈ Z, λπz +
∑

s ∈S,z′∈ϕ−1

s (z )

νs,z′ψs (z
′) =

∑
s ∈S

νs,z , (3)

∀s ∈ S,
∑
z∈Z

νs,z + δs ≤ µs , (4)

then there exists a policy under which the system is stable. If there does not exist non-negative real numbers νs,z ,
for s ∈ S , z ∈ Z and non-negative real numbers δs for s ∈ S such that the above constraints hold, then the system
cannot be stable.

We use the condition of existence of an expert s such that minc ps,c > 0 only for a technical reason to simplify

our proof. We believe that the result holds even when this is not true.

We now describe the policy which achieves optimal stability. We need some more notation to describe the

policy. Consider a set Y ⊂ Z. Let X (t ) be the number of tasks in the system at time t which have been of type

z ∈ Z\Y . For z ∈ Y , let X̃z (t ) and Ñz (t ) be the tasks of mixed-type z which have and have not had mixed-type

in Z\Y . Also, for convenience, for each z ∈ Z\Y , let X̃z be the tasks of mixed-type z, i.e., Nz = X̃z for each

z ∈ Z\Y . �us, we have X =
∑

z X̃z . Consider the following policy.
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De�nition 4.2 (Backpressure(Y) policy). For a given Y , let X , and {Ñz }z∈Y be as de�ned above. For each

s ∈ S, z ∈ Y let

ws,z (Ñ ,X ) =



Ñz −ψs (z)Ñϕs (z ), if ϕs (z) ∈ Y

Ñz −ψs (z)X , if ϕs (z) ∈ Z\Y
.

De�ne

Bs (Ñ ,X ) = arg max

z′∈Y :Ñz′>0

ws,z (Ñ ,X ).

If ∑
s

µs max

z∈Y :Ñz>0

ws,z (Ñ ,X ) ≥ X min

c ∈C

∑
s

µsps,c

then each expert chooses a task in Ñz where z ∈ Bs (Ñ ,X ) ⊂ Y with ties broken arbitrarily. Else, each expert

serves a task in X chosen uniformly at random.

�e following theorem follows from the proof of �eorem 4.1.

Theorem 4.3. Suppose there exists s such that minc ps,c > 0. If the su�cient conditions for stability as given by
�eorem 4.1 are satis�ed, then there exists a �nite subset Y ofZ such that the policy Backpressure(Y) stabilizes the
system.

Unlike backpressure policy proposed in [33] under a di�erent se�ing, which was agnostic to system arrival

rates, a set Y such that Backpressure(Y) policy stabilizes the system may depend on the value of λ. We now use

�eorem 4.1 to provide su�cient conditions for stability for a scenario considered in Section 3.1. For proof of the

corollary below, see Section 8.5.

Corollary 4.4. For a two types-two experts systemwith parametera as de�ned in De�nition 3.2, the Backpressure(Z)
policy stabilizes the system if λ < min {3a/(a + 1), 2a}. Further, the system is unstable if the strict inequality is
reversed.

Compare this with the stability region achieved by greedy and random policies, as given by �eorem 3.3 and

Corollary 3.6, respectively. As we argued in Section 3.3, the backpressure(Y) policy may signi�cantly outperform

greedy and random policies.

5 EXPERIMENTAL RESULTS
In this section, we present our empirical results obtained by using data from Math.Stack-Exchange Q&A platform.

In this platform, users post tagged questions that are answered by other users. �e asker may select one of

the submi�ed answers as the best answer for the given question, which is made public information in the

platform. We will use this data to estimate the success probabilities of experts in answering questions, and use

this parameters in simulations to compare the throughputs that can be achieved by our two baseline policies and

the stability-optimal backpressure policy. �is will show that a substantially larger throughput can be achieved

by the stability-optimal backpressure policy relative to the baseline policies.

Dataset. �e dataset consists of around 800, 000 questions. It was retrieved on February 2nd, 2017. �e top 11

most common tags are given in Table 1 in decreasing order of popularity. Among these tags, the most common is

calculus which covers 61, 184 questions, and the least common is complex analysis which covers 22, 813 questions.

In our analysis, we used only questions that are tagged with at least one of the 11 most popular tags, which

amounts to a total of 381, 239 questions.
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Table 1. Skills of experts estimated by using data from the Math.Stack-Exchange Q&A platform.

Clusters

Tag 1 2 3 4 5 6 7 8 9 10

calculus .32 .39 .30 .35 .37 .47 .28 .16 .26 .41
real-analysis .17 .41 .25 .32 .23 .49 .40 .10 .10 .44

linear-algebra .46 .29 .05 .36 .14 .48 .26 .31 .07 .43
probability .07 .49 .02 .33 .02 .50 .06 .02 .46 .04

abstract-algebra .02 .05 .03 .32 .02 .38 .23 .50 .01 .27

integration .09 .43 .05 .19 .44 .45 .03 .01 .06 .37
sequences-and-series .05 .32 .16 .31 .20 .45 .09 .04 .06 .33

general-topology .02 .10 .03 .16 .02 .43 .50 .07 .02 .31

combinatorics .03 .14 .06 .43 .04 .37 .02 .06 .19 .05

matrices .27 .15 .02 .31 .02 .44 .06 .11 .02 .34

complex-analysis .02 .19 .08 .16 .14 .50 .09 .05 .01 .44
Size 165 188 313 200 179 183 231 187 178 176

Estimated skill sets. �e success probabilities of answering questions are estimated as follows. For a given

user-tag pair, the success probability is estimated by the empirical frequency of the accepted answers by this user

for questions of given tag, conditional on that the user had at least 5 accepted answers for questions of the given

tag, and otherwise we estimate the success probability is set to be equal to zero. �ese success probabilities are

estimated for 2, 000 users with the most accepted answers. Among these users, the user with the most accepted

answers had 4, 665 accepted answers, and the user with the least number of accepted answers had 13 accepted

answers. 712 users had more than 50 answers accepted. In order to form clusters of users with similar success

probabilities for di�erent tags, we ran the k-means clustering algorithm.

�e estimated success probabilities are shown in Table 1. �e columns correspond to di�erent centroids of

the clusters and give average success probabilities for di�erent tags. In the bo�om row, we give the sizes of the

corresponding clusters. For instance, the 165 persons in cluster 1 have on average 32% of their calculus, and 46%

of their linear algebra answers accepted.

�ere is a pronounced separation of users who answer questions with respect to their expertise into those who

are good at answering questions of any topic and those who are specialized in particular topics. In Table 1, we

highlighted the success probabilities of value at least 35% from which we observe that (a) there is a cluster, namely

cluster 6, which contains 183 very active, experienced experts doing well on all tags; (b) there is a cluster, namely

cluster 3, which contains a bulk of 313 users with low performance over all tags; (c) there are clusters, namely

clusters 1, 7, 8 and 9, which contain users specialized in a single topic; and, �nally, (d) the users in remaining

clusters, namely clusters 2, 4, 5 and 10 do well on a few related topics.

�ere is also a prevalence of questions with di�erent combinations of tags, that is, mixed types. We kept only

those combinations of tags that occur for at least 1% of the total number of questions. �is results in 16 tag

combinations among which 11 are singletons and 5 are combinations of 2 tags. For instance, 11% of the questions

are tagged only with calculus and 4% of the questions are tagged with both linear-algebra and matrices. We

observed that roughly 19% of the questions are tagged with multiple tags, showing the relevance of our model.

Simulation setup. We regard 10 clusters of users as the set of experts in our system and consider the 11 tags

as pure types; the questions are then either of pure or mixed type. We de�ne the set of task types as the set

containing all pure types plus the 5 most frequently seen mixed types. For a mixed type we assume that the
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priors are uniformly distributed (i.e., a question with tags calculus and integration is with 1/2 chance of pure

type calculus). Each arrival task is one of 16 types plus all vectors that can be obtained by applying a �nite

composition of functions in {ϕs (·)}s ∈S on the arriving types. We de�ned the arrival frequencies of task types

in our simulations by normalizing the occurrence of the 16 types. We assumed the experts to have unit service

rates. We make this approximation as we do not have the information about times at which experts begin to

respond a question. We examined the system for increasing values of task arrival rates. We simulate our CTMC

via a discrete event simulator. It sequentially computes changes of the state of the system as determined by the

occurrence of some event such as a task arrival or a response from an expert. All our experiments were for a

simulation run that consists of 3.5 million events.

For the backpressure policy we de�ne the set Y to consist of all 11 pure types, the 5 most frequently seen

mixed types upon arrival as described above, and the mixed types that result from addressing the above mixed

types by an expert exactly once. Note that pure types can be a�empted multiple times without changing its type.

We thus have |Y | = 16 + 5 · 10 = 66. Our choice of Y is a result of a compromise between performance and

complexity. Choosing a larger set ofY may increase the stability region by a small fraction, but may signi�cantly

increase the complexity of the Backpressure policy.

Performance comparison of di�erent policies. We evaluated the time-average number of tasks in the system for

di�erent task arrival rates for the three policies under our consideration. �ese results are shown in Figure 1. We

observe that the task arrival rates at which random, greedy, and backpressure become unstable are, 2.2, 3.80 and

4.10, respectively. �us, random policy performs much worse than any other policy, and the backpressure policy

achieves throughput improvement of about 8% over the greedy policy.

We further examined the evolution of the number of tasks in the system waiting to be served over time for

greedy and backpressure policy for respective task arrival rates, 3.78 and 3.83 (Figure 2 le�) and respective task

arrival rates 3.83 and 4.08 (Figure 2 right). We observe that for the two comparison cases the backpressure policy

tends to result in smaller number of tasks waiting to be served than the greedy policy, even when operating

under a larger task arrival rate. By experimentations, we observed that under the backpressure policy the system

becomes unstable at an arrival rate of about 4.1. We expect that extending the de�nition of Y would allow to

achieve even higher throughputs.

6 RELATED WORK
�e problem studied in this paper is broadly related to that of multi-arm bandits, e.g., see [1, 4, 12, 20] and

citations therein, in the sense of optimizing the trade-o� between exploration, to learn job types, and exploitation,

to optimize task performance. It also has some relation with collaborative �ltering systems such as those studied

in [18, 19, 32], which can be interpreted as expert-task systems where success probabilities admit a low-rank

matrix structure. Unlike our work, there good matches are inferred from observed assignments of tasks to experts,

which are according to a given statistical model, and there are no resources constraints imposed on the experts.

A related line of work is that on stochastic online matching, e.g., [14, 25, 26]. �e stochastic online matching

can be interpreted as a task-expert system where each expert is associated with a budget constraint that allows

to solve at most one task. �e goal is to maximize the expected number of successful assignments over a given

number of task arrivals. �e competitive ratios of di�erent assignment policies have been established under

certain restrictions on the success probabilities, such as assuming that each takes either a common positive

value or zero value, or that each takes an arbitrary but small enough value. Unlike our work where the task

types are uncertain, uncertainty in these models come from the arbitrariness of the future task arrivals and the

monotonically decreasing available resource budgets.

In [5], the authors considered a task-expert system where task types are of two di�culty levels (hard or easy)

and expert skills are of two levels (senior or junior). Seniors may serve any task, but juniors may only serve easy
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Fig. 1. Time-average number of tasks in the system versus the task arrival rate for three di�erent policies: random, greedy
and backpressure. The system under random policy becomes unstable at task arrival rate of about 2.2, under greedy policy
at about 3.8 and under backpressure policy of about 4.1 (not shown in the figure). Note that the backpressure policy still
allows for the system to be stable at the task arrival rate of about 4.08 (the right-most red dot in the figure).

tasks. �e type of each task is assumed to be unknown upon arrival. It is shown that there exists an optimal

policy where all tasks are �rst routed to junior experts and then progressively moved to senior ones. We allow for

much more generality with respect to the heterogeneity of skills of experts. In their model, a task upon service

can only become progressively harder, which amounts to a feed-forward system, unlike our model.

�e work in [16] considers a model where the expert resources are constrained and shared by di�erent tasks

of uncertain types. �ey consider a se�ing where each task can be divided into a large number of subtasks of the

same type, vanishingly small amount of which could be used to accurately learn the task’s type, and the rest

can be served optimally. �is decouples the learning of each task’s type from the performance in execution and

expert utilization, and is thus di�erent from our work.

Another related literature is that of constrained queueing systems, where arriving tasks are to be served by

heterogeneous servers subject to resource constraints, e.g., [2, 7, 8, 11, 15, 21, 27, 31, 35]. �e goal is to e�ciently

utilize server resources while providing good performance in servicing tasks, e.g., optimizing task delays. Our

matching policy is of a �avor similar to the stability-optimal backpressure policy �rst proposed in [33]. �e

se�ing close to ours is the one studied in [31] for routing queries in peer-to-peer networks. Here, the types of the

queries are known but the locations of nodes where the queries may by successfully resolved are uncertain. More

technically, we associate queues with each prior distribution which may be in�nite in number. �is makes the

stability analysis much more challenging. Another related work is that on scheduling �exible servers [22], which

allows for tasks of di�erent types and servers of di�erent skills. It has been established that a greedy, so called

max-weight policy, minimizes a strictly convex cost function of task delays in a heavy tra�c regime. In [13] this

strictness requirement is removed for a class of systems with homogeneous server speeds. �e main di�erence

from our work is that all these works assume that task types are known.

Finally, we contrast our work to the matching problem studied in the context of crowdsourcing systems such as

[10, 17, 30, 36]. �ese works are concerned with classi�cation tasks with unknown ground truths. �is is unlike

our work, where we consider tasks such that upon each a�empt of an expert solving a task, we observe whether

or not the task has been successfully solved. Another di�erence is that these works typically consider a static
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Fig. 2. Total number of tasks in the system over time for the greedy and backpressure policy. The blue curves correspond to
greedy policy and red curves correspond to backpressure policy. The task arrival rates are as indicated in the figures. (Le�)
both policies provide stability but backpressure policy has overall be�er performance. (Right) greed policy fails to provide
stability, while backpressure policy provides stability.

model where a task assignment to a set of experts is made all at once. In [24] labeling tasks arrive dynamically

and their exit is tied to the expert allocation decisions, in that a task leaves once the probability of error in the

label estimate falls below a threshold.

7 CONCLUSION
We studied matching of tasks and experts in a system with uncertain task types. We established a complete

characterization of the stability region of the system, i.e. the set of task arrival rates that can be supported by

a matching policy such that the expected number of tasks waiting to be served is �nite. We showed that any

task arrival rate in the stability region can be supported by a back-pressure matching policy. We also compared

with two baseline matching polices, and identi�ed instances under which there is a substantial gap between

the maximum task arrival rates that can be supported by these policies and that of the optimum back-pressure

matching policy.

�ere are several interesting directions for future research. First, for the case when task types are unknown, it

is of interest to consider matching policies that optimise di�erent kinds of performance objectives, such as, for
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example, minimizing the long-run average of a function of task waiting times. Second, much remains to be said

about matching policies for the case when both task types and the skills of experts are unknown.

8 PROOFS

8.1 Proof of Theorem 3.3
We �rst show that if λ < 4a/(2 + a) then the system is stable. For each t let t + τ (t ) be the time at which the

�rst event (arrival or completion of a response) occurs a�er time t . Let τn = E[τ (t ) |N (t ) = n], i.e., given that

N (t ) = n at time t , τn is the expected time at which the �rst event occurs a�er time t . For example, for n = 0 we

have τn = 1/λ.

A common approach to show system stability is to use Lyapunov-Foster theorem, see e.g., Proposition I.5.3 on

page 21 in [3]. �e idea is to construct a function L(·) such that L(n) tends to in�nity as |n | → ∞ and that has a

strictly negative ‘dri�’ for all but �nite values of n, i.e., there exists a constant ϵ > 0 such that

E
[
L(N (t + τ (t ))) − L(N (t ))���N (t ) = n

]
≤ −ϵτn ,

for all but �nite values of n. Intuitively, negative dri� condition implies that as L(N (t )) becomes large (i.e., as

N (t ) becomes large) the system dynamics is such that L(N (t )) tends to decrease in expectation. �is prevents

the L(t ) from blowing up to∞ as t increases and thus keeps the system stable. Roughly, the Lyapunov-Foster

theorem states that the negative dri� condition is indeed su�cient to ensure that that system is positive recurrent

and thus stable. We will use a variant of Lyapunov-Foster theorem, provided below, which follows from �eorem

8.13 in [28].

Theorem 8.1. Consider an irreducible CTMC N (t ) that takes values in a countable state-space. Let τ (t ) and τn be
as de�ned above. If there exists a function L(·), and constants K > 0 and ϵ > 0 such that for L(n) > K we have

E
[
L(N (t + τ (t ))) − L(N (t ))���N (t ) = n

]
≤ −ϵτn ,

and if {n : L(n) ≤ K } is �nite, then N (t ) is positive recurrent.

Now suppose that λ < 4a/(2 + a). �en, it can be checked that
2−a

2(2−λ)λ < a. �us, there exists δ > 0 such

2−a
2(2−λ)λ = (1 + δ )a. Now, consider the following Lyapunov function: for each n, we have

1

τn
L(n) = (1 + δ )

2 − a

2(2 − λ)
nz′ + nz′′,

where δ is a constant obtained as above.

Consider states n such that nz′ > 0. For these states, we obtain

1

τn
L(n) = (1 + δ )

2 − a

2(2 − λ)

(
λ − µs1

− µs2

)
+

(
µs1
ψs1

(z ′) + µs2
ψs2

(z ′)
)

= (1 + δ )
2 − a

2(2 − λ)
(λ − 2) +

1 − a

2

+
1

2

= −δ
2 − a

2

< 0.

Now, consider states n such that nz′ = 0 and nz′′ > 0. For these states

1

τn
L(n) = δ

2 − a

2(2 − λ)
λ − µss1a = −δa < 0.

�us, the conditions of �eorem 8.1 are satis�ed with K = L((1, 1))/τ(1,1) and ϵ = min(δa,δ (2 − a)/2). Hence,

N (t ) is positive recurrent if λ < 4a/(2 + a).
We now show the only if part. Suppose that λ ≥ 4a/(2 + a). �en, the δ used in the above argument is greater

than or equal to 0. �us, dri� is non-negative for all but �nite values of n. Further, since L(·) is bounded, the
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maximum change in L(·) upon an arrival or a departure is also bounded, using Proposition I.5.4 on page 22 in [3],

we establish the only if part. �

8.2 Proof of Theorem 3.5
Note that the system under random policy is equivalent to the one where pure-type of a task is revealed upon

arrival, i.e., there is no uncertainty in task types. �is is true since the random policy does not use the information

of type (pure or mixed). We thus let that pure-type is indeed revealed upon arrival. Let Xc (t ) be the number of

tasks in the system of pure-type c . Let X (t ) = {Xc (t )}c . For each c ∈ C , the arrival rate into queue Xc (t ) is equal

to

λc ,
∑
z∈Z

λzcπz .

We �rst show the if part of the result. Suppose that we have

∑
c∈C λc∑

s∈S µsps,c
< 1. We use the �uid limit approach

developed in [9, 23, 29]. Roughly, given initial condition X (0) = x , the �uid trajectories of the state process X (t )
can be obtained by scaling initial conditions, speeding time, and then studying the rescaled process; i.e., le�ing

limk→∞
1

kX (0) = x , and studying limk→∞
1

kX (kt ).
Using arguments similar to those used in [23], the �uid limits for the number of tasks in each class can be

shown to satisfy the following at almost all times t : for each c ∈ C and Xc > 0 we have

d

dt
Xc = λc −

∑
s ∈S

µsps,c
Xc∑
c ′ Xc ′

. (5)

De�ne a function L on RC as

L(X ) =
∑
c

Xc log

(
Xc

γc
∑
c ′ Xc ′

)
, (6)

where γc ,
λc∑

s∈S µsps,c
.

Further, by following the arguments similar to [23], if we have that L(X ) → ∞ and
d
dt L(X ) → −∞ as |X | → ∞

under �uid limits then the stability of the original system follows. We show below that both these limits hold.

Using (5) and (6), we obtain

d

dt
L(X ) =

∑
c

(
d

dt
Xc

)
log

(
Xc

γc
∑
c ′ Xc ′

)
, (7)

=
∑
c

*
,
λc −

∑
s ∈S

µsps,c
Xc∑
c ′ Xc ′

+
-

(
log

Xc∑
c ′ Xc ′

− logγc

)
, (8)

=
∑
c

*
,

∑
s

µsps,c+
-

(
λc∑

s ∈S µsps,c
−

Xc∑
c ′ Xc ′

) (
log

Xc∑
c ′ Xc ′

− logγc

)
(9)

which converges to −∞ as |X | grows large.

Let θ = 1/
∑
c γc and γ̂c = γc/θ for each c ∈ C . Since

∑
c γc < 1, we have θ > 1. Let D (p | |q) be the Kullback-

Leibler divergence between two Bernoulli distributions with parameters p and q, i.e., D (p | |q) = p log(
p
q ) + (1 −

p) log(
1−p
1−q ). Now, we can write
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L(X ) =
∑
c

Xc log

(
θXc

γ̂c
∑
c ′ Xc ′

)
(10)

=
∑
c

Xc logθ +
∑
c

Xc log

(
Xc∑
c ′ Xc ′

.
1

γ̂c

)
(11)

=
∑
c

Xc logθ + *
,

∑
c

Xc+
-
D *

,

{
Xc∑
c ′ Xc ′

}
c ∈C

������

������
{γ̂c }c ∈C+

-
(12)

which converges to∞ as |X | grows large.

Hence, the if part of the result follows. �e same line of argument can also be used to show that if

∑
c∈C λc∑

s∈S µsps,c
≥ 1

the dri� is non-negative for all but �nite number of states. Further, since L(X ) is bounded, the maximum change

in L(X ) upon an arrival or a departure is also bounded, using Proposition I.5.4 on page 22 in [3], we get the only

if part. �

8.3 Proof of Theorem 4.1
We �rst show stability under su�cient conditions. In networked systems, e.g. see [11, 33], a standard approach

towards proving stability of a backpressure type policy is to design a ‘static’ policy using �ow variables {νsz }s,z
and the slacks {δs }s which provides a �xed service rate to each queue Nz such that its dri� is su�ciently negative

for each. However, in our setup the total number of queues {Nz }z∈Z could be countable, while the total available

slack is �nite. �us, it is not possible to design a static policy such that the dri� in each individual queue is

bounded from above by a negative constant. �is is unlike any �nite-server queueing system considered in the

previous literature.

We thus take a di�erent approach, which can be explained roughly as follows. Since the total exogenous arrival

rate λ, and the total endogenous arrival rate, i.e. arrival into a queue due to failure at another queue, are both

�nite (they are bounded from above by

∑
s µs ), there exists a �nite set Y ⊂ Z such that the total arrival rate

intoZ\Y is less than minc ∈C
∑

s ∈S
δs
4
ps,c . Each task which enters a queue Nz where z ∈ Z\Y is instead sent to

a virtual queue X , and stays there until there is a success. If X is ‘large’ compared to the other queues then all

the servers focus on X . �e �nite number of remaining queues are operated via a backpressure policy which

accounts for the ‘expected backlog’ seen in these queues.

More formally, consider {νs,z }s,z and positive constants {δs }s as postulated in the theorem. Without loss of

generality, assume that there exists a constant 0 < ϵ < 1 such that δs = ϵµs for each s ∈ S . Let Y be a �nite

subset ofZ such that ∑
z∈Z\Y

*.
,
λπz +

∑
s ∈S

∑
z′∈ϕ−1

s (z )∩Y

νs,z′ψs (z
′)+/

-
≤ min

c ∈C

∑
s ∈S

δs
4

ps,c .

Since λ +
∑

s ∈S,z∈Z νs,z ≤ 2

∑
s µs , such a Y exists.

Let X be the number of tasks in the system which are or have been in past of type z ∈ Z\Y . Once a task

enters queue X it does not leave it until success. �ere may be tasks in it with mixed-type in Y . Note, our policy

will depend on X and thus {z (s, t )}s will not be N (t ) measurable. In turn, N (t ) will not be a CTMC. For z ∈ Y , let

X̃z and Ñz be the tasks of mixed-type z which have and have not had mixed-type inZ\Y . Also, for convenience

for each z ∈ Z\Y , let X̃z be the tasks of mixed-type z, i.e., Nz = X̃z for each z ∈ Z\Y . We now formally de�ne

σ
(
{X̃z }z∈Z, {Ñz }z∈Y

)
-measurable backpressure policy. �us,

(
{Ñz }z∈Y , {X̃z }z∈Z

)
is a CTMC.
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We now show stability of the system under this policy for Backpressure(Y) as given in De�nition 4.2. Below we

will assume that the ties in selecting z from Bs (Ñ ,X ) are broken uniformly at random for simplicity of exposition.

�e proof can be easily extend to any other tie breaking approach. Consider the following Lyapunov function.

L(Ñ , X̃ ) =
∑
z∈Y

Ñ 2

z +
*.
,

∑
z∈Z

Xz
+/
-

2

=
∑
z∈Y

Ñ 2

z + X
2.

For each t , let t + τ (t ) be the time at which the �rst event (arrival or completion of a response) occurs a�er

time t . Clearly, τ (t ) is a stopping time. Further, let τñ, x̃ (t ) = E[τ (t ) |(Ñ , X̃ ) = (ñ, x̃ )].
Let

D (ñ, x̃ ) ,
1

τñ, x̃
E

[
L(Ñ (t + τ ), X̃ (t + τ )) − L(Ñ (t ), X̃ (t ))���Ñ (t ) = ñ, X̃ (t ) = x̃

]
.

D (ñ, x̃ ) is called dri� in state n. We would like to show that there exists a positive integer K and positive constant

ϵ such that

D (ñ, x̃ ) ≤ −ϵ ∀(ñ, x̃ ) s.t. max( |ñ |∞,x ) ≥ K .

Let for each s ∈ S and z ∈ Y let

ν∗s,z = 1


x min

c ∈C

∑
s

µsps,c >
∑
s

µs max

z∈Y :ñz>0

ws,z (ñ,x )


1{z ∈ Bs (n)}

1

|Bs (n) |
.

�en, one can check that

1

τñ, x̃
E[Ñz (t +τ )

2 − Ñz (t )
2���Ñ (t ) = ñ, X̃ (t ) = x̃] = (2ñz + 1) *.

,
λπz +

∑
s ∈S

∑
z′∈ϕ−1

s (z )∩Y

ν∗sz′ψs (z
′)+/

-
+ (−2ñz + 1)

∑
s

ν∗s,z .

Further, let

ν∗ = 1


x min

c ∈C

∑
s

µsps,c >
∑
s

µs max

z∈Y :ñz>0

ws,z (ñ,x )


.

�en, we have that

1

τñ, x̃
E[X (t + τ )2 − X (t )2���Ñ (t ) = ñ, X̃ (t ) = x̃]

≤ (2x + 1)
∑

z∈Z\Y

*.
,
λπz +

∑
s ∈S

∑
z′∈ϕ−1

s (z )∩Y

ν∗s,z′ψs (z
′)+/

-
+ (−2x + 1)ν∗min

c

∑
s

µsps,c

�us, we get

D (ñ, x̃ ) ≤
∑
z∈Y

(2ñz + 1) *.
,
λπz +

∑
s ∈S

∑
z′∈ϕ−1

s (z )∩Y

ν∗s,z′ψs (z
′)+/

-
+ (−2ñz + 1)

∑
s

µsν
∗
s,z

+ (2x + 1)
∑

z∈Z\Y

*.
,
λπz +

∑
s ∈S

∑
z′∈ϕ−1

s (z )∩Y

ν∗s,z′ψs (z
′)+/

-
+ (−2x + 1)ν∗min

c

∑
s

µsps,c .

Upon arranging terms, we obtain
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D (ñ, x̃ ) ≤
∑
z∈Y

2ñz
*.
,
λπz +

∑
s ∈S

∑
z′∈ϕ−1

s (z )∩Y

ν∗sz′ψs (z
′) −

∑
s

ν∗s,z
+/
-

+ 2x *.
,

∑
z∈Z\Y

*.
,
λπz +

∑
s ∈S

∑
z′∈ϕ−1

s (z )∩Y

ν∗sz′ψs (z
′)+/

-
− ν∗min

c

∑
s

µsps,c
+/
-

+
*.
,
λ +

∑
zZ

∑
s ∈S

∑
z′∈ϕ−1

s (z )∩Y

ν∗s,z′ψs (z
′) +

∑
z∈Y

∑
s

ν∗s,z + ν
∗

min

c

∑
s

µsps,c
+/
-

�e last of the above three terms can be bounded by a constant, say α1 = 10

∑
s µs . For each s ∈ S and

z ∈ Y let ν̂∗s,z = (µs − 3δs/4)ν
∗
s,z and ν̃∗sz = (δs/4)ν

∗
s,z . Further, let ν̂∗ = minc

∑
s (µs − 3δs/4)ps,cν

∗
and

ν̃∗ = minc
∑

s (δs/4)pscν
∗
. �en,

D (ñ, x̃ ) ≤
∑
z∈Y

2ñz
*.
,
λπz +

∑
s ∈S

∑
z′∈ϕ−1

s (z )∩Y

ν̂∗sz′ψs (z
′) −

∑
s

ν̂∗s,z
+/
-

+ 2x *.
,

∑
z∈Z\Y

*.
,
λπz +

∑
s ∈S

∑
z′∈ϕ−1

s (z )∩Y

ν̂∗s,z′ψs (z
′)+/

-
− ν̂∗+/

-
+ α1

+
∑
z∈Y

2ñz
*.
,

∑
s ∈S

∑
z′∈ϕ−1

s (z )∩Y

ν̃∗s,zψs (z
′) −

∑
s

ν̃∗sz
+/
-
+ 2x *.

,

∑
s ∈S

∑
z′∈ϕ−1

s (z )∩Y

ν̃∗s,z′ψs (z
′) − ν̃∗+/

-
Consider the following lemma. Its proof is given in Section 8.4.

Lemma 8.2. Recall the {νs,z }s,z as postulated by the theorem. For Θ = {θs,z }s ∈S,z∈Y ∪θ , where θ and θs,z for each
s, z are reals, let

f (Θ) =
∑
z∈Y

2ñz
*.
,
λπz +

∑
s ∈S

∑
z′∈ϕ−1

s (z )∩Y

θsz′ψs (z
′) −

∑
s

θs,z
+/
-
+ 2x *.

,

∑
z∈Z\Y

*.
,
λπz +

∑
s ∈S

∑
z′∈ϕ−1

s (z )∩Y

θsz′ψs (z
′)+/

-
− θ+/

-
.

�en,
f

(
{ν̂∗s,z }s ∈S,z∈Y ∪ ν̂

∗
)
≤ f

(
{νs,z }s ∈S,z∈Y ∪ {min

s
δs/4}

)
.

From de�nition of νs,z , we get that the �rst term in f ({νs,z }s ∈S,z∈Y ∪ {mins δs/4}) is equal to 0 and that the

second term is less than or equal to 0.

�us, we obtain

D (ñ, x̃ ) ≤ α1 +
∑
z∈Y

2ñz
*.
,

∑
s ∈S

∑
z′∈ϕ−1

s (z )∩Y

ν̃∗s,zψs (z
′) −

∑
s

ν̃∗s,z
+/
-
+ 2x *.

,

∑
s ∈S

∑
z′∈ϕ−1

s (z )∩Y

ν̃∗s,z′ψs (z
′) − ν̃∗+/

-
.

Rearranging, we get

D (ñ, x̃ ) ≤ α1 − 2

∑
s ∈S

∑
z∈Y :ϕs (z )∈Y

ν̃∗sz (ñz −ψs (z)ñϕs (z ) ) − 2

∑
s ∈S

∑
z∈Y :ϕs (z )∈Z\Y

ν̃∗s,z (ñz −ψs (z)X ) − 2xν̃∗.

Fix ϵ > 0. We now show that there exist a positive integerK such that if x > K or if |ñ |∞ > K then D (ñ, x̃ ) ≤ −ϵ .

Upon rearranging terms, we obtain
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D (ñ, x̃ ) ≤ α1 − 2

∑
s ∈S

∑
z∈Y :ϕs (z )∈Y

ν̃∗s,z (ñz −ψs (z)ñϕs (z ) ) − 2

∑
s ∈S

∑
z∈Y :ϕs (z )∈Z\Y

ν̃∗s,z (ñz −ψs (z)X ) − 2xν̃∗

= α1 − 2

∑
s ∈S

∑
z∈Y

ν̃∗s,zws,z (ñ,x ) − 2ν̃∗x ,

= α1 −max
*.
,
2

∑
s ∈S

∑
z∈Y

ν̃∗s,zws,z (ñ,x ), 2ν̃
∗x+/

-
�us we get,

D (ñ, x̃ ) ≤ α1 − x min

c ∈C

∑
s ∈S

δs
4

ps,c .

Hence, for any (ñ,x ) such that x > (α1 + ϵ ) minc ∈C
∑

s ∈S
δs
4
ps,c , we have D (ñ, x̃ ) ≤ −ϵ .

We also have that

D (ñ, x̃ ) ≤ α1 − 2

∑
s ∈S

δs
4

max

z∈Y
ws,z (ñ,x ).

�us,

D (ñ, x̃ ) ≤ α1 − 2

(
min

s ∈S

δs
4

) ∑
s ∈S

max

z∈Y
ws,z (ñ,x ) ≤ α1 − 2

(
min

s ∈S

δs
4

)
max

z∈Y

∑
s ∈S

ws,z (ñ,x ).

Now suppose that x ≤ α2 , (α1 + ϵ ) minc ∈C
∑

s ∈S
δs
4
ps,c . �en, if we show that maxz∈Y

∑
s ∈S ws,z (ñ,x ) → ∞

as |ñ |∞ → ∞, then we have that D (ñ, x̃ ) ≤ −ϵ a positive integer K ′ such that |ñ |∞ > K ′. We now show that∑
s ∈S maxz∈Y ws,z (ñ,x ) → ∞ as |ñ |∞ → ∞.

Let z∗ = arg maxz∈Y nz . �en we have∑
s ∈S

ws,z∗ (ñ,x ) ≤
∑
s

(nz∗ −ψs (z) min(α2,nz∗ )

= |S |nz∗ −min(α2,nz∗ )
∑
s

ψs (z)

which tends to in�nity because∑
s

ψs (z) =
∑
s

∑
c

z∗c (1 − ps,c ) = |S | −
∑
s

∑
c

z∗cps,c

≤ |S | −max

c

∑
s

z∗cps,c ≤ |S | −max

c
z∗c min

c

∑
s

ps,c

≤ |S | −
1

|C |
min

c

∑
s

ps,c < |S |.

�us, there exist positive constants K and ϵ such that if x > K or if |ñ |∞ > K then D (ñ, x̃ ) ≤ −ϵ .

Let A , {(ñ, x̃ ) : max( |ñ |∞,x ) ≤ K }. �en, using a version of Lyapunav-Foster �eorem from [34], we have

that, from any state (ñ, x̃ ) such that |ñ | + x < ∞, the expected time to return to A, i.e., τA (ñ, x̃ ) is �nite. Further,

T , sup

(ñ, x̃ )∈A
τA (ñ, x̃ ) < ∞.

�us, starting with any state in A, we return to it in a �nite expected time. We will be done if we show that

expected time to return to state (0, 0) is also �nite. We do this as follows. Fix a constant β > 0. Since there exists
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s such that minc ps,c > 0, we have that for any interval of time of size β the probability that no arrival happens

in the this interval and that a task leaves the system is �nite.

Suppose that system is in a state (ñ, x̃ ) ∈ A at time t = 0. Now consider renewal times Ti , i = 0, 1, 2, . . . ,,
whereT0 = 0 and for each i > 0, Ti is de�ned as follows: Ti is equal to Ti−1 + β if indeed no arrival happens and a

task leaves the system in the interval [Ti−1,Ti ), else Ti is the �rst time of return to A a�er Ti−1. Clearly E[Ti ]
since T as de�ned above is �nite. Further probability that a task leaves system in time Ti −Ti−1 is �ne, say α .

�us, time for system emptying a�er �rst reaching A can be upper-bounded by sum of K geometric random

variables with rate α . �us expected time to return to state (0, 0) is �ne. Hence, the system is stable.

Now suppose that the system is stable. �en, the necessary conditions can be shown to hold by the ergodicity

of the system, and le�ing νs,z for each s, z to be the long-term fraction of times a server s a�empts a task in

Nz . �

8.4 Proof of Lemma 8.2
Upon rearrangement of terms in the expression of f (Θ) we obtain

f (Θ)/2 = −
∑
s

∑
z∈Y :ϕs (z )∈Y

θs,z (nz −ψs (z
′)nϕs (z ) ) −

∑
s

∑
z∈Y :ϕs (z )∈Z\Y

θs,z (nz −ψs (z
′)x ) − xθ .

By using the de�nition of weights ws,z , we obtain

f (Θ)/2 = −
∑
s

∑
z∈Y

θs,zws,z (ñ,x ) − xθ ≥ −
∑
s

(
max

z∈Y
ws,z (ñ,x )

) ∑
z∈Y

θs,z − xθ .

�us,

f ({νsz }s ∈S,z∈Y ∪ {min

s
δs/4})/2

≥ −
∑
s

(
max

z∈Y
ws,z (ñ,x )

) ∑
z∈Y

νs,z − x min

c

∑
s ∈S

(δs/4)psc

≥ −
∑
s

(µs − δs/2) max

z∈Y
wsz (ñ,x ) − x min

c

∑
s ∈S

(δs/4)ps,c

≥ −1



∑
s

max

z∈Y
ws,z (ñ,x ) (µs − 3δs/4) ≥ x (min

c

∑
s

(µs − 3δs/4)ps,c )



∑
s

max

z∈Y
ws,z (ñ,x ) (µs − 3δs/4)

− 1



∑
s

max

z∈Y
ws,z (ñ,x ) (µs − 3δs/4) < x (min

c

∑
s

(µs − 3δs/4)ps,c )


x min

c

∑
s

(µs − 3δs/4)ps,c

= f
(
{ν̂∗sz }s ∈S,z∈Y ∪ ν̂

∗) /2.
Hence, the lemma holds. �

8.5 Proof of Corollary 4.4
Proof. For this system we have Z = {z ′, z ′′} where z ′c =

1

2
for each c ∈ C , and z ′′c = 1{c = c2}. �e �ow

conservation constraints can be given as follows:

λ =
∑
s

νs,z′, and

∑
s

νs,z′ψs (z
′) +

∑
s

νs,z′′ψs (z
′′) =

∑
s

νs,z′′
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Suppose a ≥ 1

2
. �ere exists an ϵ > 0 such that λ = 3a (1−ϵ )

a+1
. It can be checked that {νsz }s,z where

νs2,z′ = 1 − ϵ,νs2,z′′ = 0,νs1,z′ =
2a − 1

a + 1

(1 − ϵ ),νs1,z′′ =
2 − a

a + 1

(1 − ϵ )

and {δs }s ∈S where δs = ϵ for each s satis�es su�cient conditions of �eorem 4.1.

Now suppose a < 1

2
. �ere exists an ϵ > 0 such that λ = 2a(1 − ϵ ). It can be checked that {νs,z }s,z where

νs2,z′ = 2a(1 − ϵ ),νs2,z′′ = 0,νs1,z′ = 0,νs1,z′′ = (1 − ϵ )

and {δs }s ∈S where δs = ϵ for each s satis�es su�cient conditions of �eorem 4.1.

�e result then follows from the proof of �eorem 4.1 by taking Y asZ. �
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