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Abstract We consider multi-class queueing systems where the per class ser-
vice rates depend on the network state, fairness criterion, and is constrained
to be in a symmetric polymatroid capacity region. We develop new compari-
son results leading to explicit bounds on the mean service time under various
fairness criteria and possibly heterogeneous loads. We then study large-scale
systems with growing numbers of service classes n (e.g., files), heterogenous
servers m = dbne with total service rate ⇠m, and polymatroid capacity re-
sulting from a random bipartite graph G(n) modeling service availability (e.g.,
placement of files across servers). This models, for example, content deliv-
ery systems supporting pooling of server resources, i.e., parallel servicing of a
download request from multiple servers. For an appropriate asymptotic regime,
we show that the system’s capacity region is uniformly close to a symmetric
polymatroid – i.e., heterogeneity in servers’ capacity and file placement disap-
pears.

Combining our comparison results and the asymptotic ‘symmetry’ in large
systems, we show that large randomly configured systems with a logarithmic
number of file copies are robust to substantial load and server heterogeneities
for a class of fairness criteria. If each class can be served by cn = !(log n)

servers, the load per class does not exceed ✓n = o
⇣

min( n
logn , cn)

⌘

, mean ser-

vice requirement of a job is ⌫, and average server utilization is bounded by

V. Shah
The University of Texas at Austin
Department of ECE
Austin, Tx 78712 USA
E-mail: virag@utexas.edu

G. de Veciana
The University of Texas at Austin
Department of ECE
Austin, Tx 78712 USA
E-mail: gustavo@ece.utexas.edu



2 Virag Shah, Gustavo de Veciana

� < 1, then for each constant � > 1 the conditional expectation of delay of a
typical job with respect to �-algebra generated by G(n) satisfies the following:
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1 Introduction

In many shared network systems service rate is allocated to ongoing jobs based
on a fairness criterion, e.g., ↵-fair (↵F) (including max-min and proportional
fair) as well as Balanced fair (BF), and other Greedy criteria [26]. When the
network loads are stochastic a key open question is how the choice of fairness
and network design will impact user perceived performance, e.g., job delays,
as well as the sensitivity of performance to heterogeneity in network resources
and tra�c loads. Motivated by this challenge in this paper we take a step
towards understanding these issues by investigating performance bounds for an
interesting class of stochastic networks with symmetric polymatroid capacity
under various fairness criteria.

The second question driving this paper is whether large scale systems can
be designed to be inherently robust to heterogeneity and at what cost? Specif-
ically we consider centralized content delivery systems where a collection a
servers deliver a proportionally large number of files. There has been substan-
tial recent interest in understanding basic design questions for these systems
including, see e.g., [9, 13, 19, 23] and references therein: How should the num-
ber of file copies scale with the demand? What kinds of hierarchical caching
policies are most suitable? How to best optimize storage/backhaul costs for
unpredictable time-varying demands?

We consider a centralized system with several collocated servers. The repli-
cation of files across servers is kept static. We allow resource pooling, i.e.,
parallel file downloads from multiple servers akin to peer-to-peer systems. In
principle, with an appropriate degree of storage redundancy one can achieve
much better peak service rates, exploit diversity in service paths, produce ro-
bustness to failures, and provide better sharing of pooled server resources.
Intuitively when such systems have su�cient redundancy they will exhibit
performance which is robust to limited heterogeneity in demands and server
capacities, as well as to the fairness criterion driving resource allocation.

Some elements of content delivery infrastructure may see less pronounced
heterogeneity in demands, e.g., a centralized back end used to deliver files that
are not available at distributed sites/caches. For such a system, with su�cient
redundancy, enabling resource pooling for individual download requests could
achieve scalable and robust performance.
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1.1 Our Contributions and Organization

The contributions of this paper are threefold, each of independent interest,
and collectively, providing a significant step forward over what is known in
the current literature.

a.) Performance bounds: In Sections 3-4. we consider a class of systems with
symmetric polymatroid capacity for which we develop several rate alloca-
tion monotonicity properties which translate to performance comparisons
amongst fairness policies, and eventually give explicit bounds on mean de-
lays. Specifically we show that under homogeneous loads the mean delay
achieved by Greedy and ↵F rate allocations are bounded by that of BF
allocation which is computable. We then extend this upper bound to the
case when the load is heterogeneous but ‘majorized by a symmetric load.’

b.) Uniform symmetry in large systems: In Section 5 we consider a bipartite
graph where nodes represent n job classes (files) and m servers with poten-
tially heterogenous service capacity. The graph edges capture the ability
of servers to serve the jobs in the given classes. If jobs can be concurrently
served by multiple servers the system’s service capacity region is polyma-
troid. We show that for appropriately scaled large system where the edge
set is chosen at random (random file placement) the capacity region is
uniformly close to a symmetric polymatroid.

c.) Performance robustness of large systems: Combining these two results, in
Section 6 we provide a simple performance bound for large-scale content
delivery systems. More specifically, the performance under ↵-fair rate al-
location for a large system is upper-bounded by that under a system with
smaller, symmetric, and approximate capacity region. The bound exhibits
performance robustness in large systems with respect to variations in to-
tal system load, heterogeneity in load across the classes, heterogeneity in
server capacities, for ↵-fair based resource allocation.

We have deferred some technical results to the appendix. Section 7 concludes
the paper.

1.2 Related work

There is a substantial amount of related work. Yet the link between fairness in
resource allocation and job delays in stochastic networks is poorly understood.
The only fairness criterion for which explicit expressions or bounds are known
is the Balanced Fair rate allocation [3] which generalizes the notion of ‘insen-
sitivity’ of the processor sharing discipline in M/G/1 queuing system. Under
balanced fairness, an explicit expression for mean delay was obtained in [5, 6]
for a class of wireline networks, namely, those with line and tree topologies.
Also, a performance bound for arbitrary polytope capacity region and arbi-
trary load was provided in [1]. Similarly [10] developed bounds for stochastic
networks where flows can be split over multiple paths. These bounds and
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expressions are either too specific or too loose. Recently, [22] developed an
expression for the mean delay for systems with polymatroid capacity and ar-
bitrary loads under Balanced Fair rate allocations. Unfortunately the result
has exponential computational complexity in general. However the symmetric
case has low complexity, a fact we use in the sequel.

Balanced fair rate allocation is defined recursively and is di�cult to im-
plement. ↵-fair rate allocations [12,18] which are based on maximizing a con-
cave sum utility function over the system’s capacity region – this includes
proportional and max-min fair allocations, are more amenable to implementa-
tion [11,14]. However, the only known explicit performance results for stochas-
tic networks under such fairness criteria are for systems where proportional
fair is equivalent to balanced fair [3, 16]. In [2], performance relationship un-
der balanced and proportional fairness for several systems where they are not
equivalent was studied through numerical computations, and were found to be
relatively close in several scenarios.

In this paper we focus on a class of stochastic networks that can be charac-
terized by a polymatroid capacity region. Such systems have also been consid-
ered in [22, 26]. For example, the work in [26] shows that when such systems
are symmetric with respect to load and capacity, a greedy rate allocation is
delay optimal. However, the result is brittle to asymmetries. We provide more
details on greedy and other rate allocations in Section 3.

In summary when it comes to fairness criteria and stochastic network per-
formance there is a gap between what is implementable and what is analyzable.
One of the goals of this paper is to provide comparison results which address
this gap, with a particular focus on addressing user-performance in a large-
scale content delivery system which leverages server diversity, i.e., availability
of multiple copies of a file to serve a download request.

From content delivery perspective, the two works closest to this paper are
[23] and [22]. Both adopt a natural model for a content delivery system based
on a bipartite graph which captures the availability of files at servers to support
the file-download requests. They show that if the graph is chosen at random
and scaled appropriately then user-performance is robust to load heterogeneity.
The authors in [23] consider a service model where each request can be served
by a single server – recall we consider systems allowing parallel download of
a file from multiple servers. Resource pooling in our service model leads to a
significantly improved mean delay bound. For example, upon availability of
cn servers for each class, our delays scale as O( 1

c
n

). Also in our work we are
able to address the role of fairness criteria and robustness to heterogeneity in
server capacities.

Our service model via resource pooling is same as in [22]. However, our
work here is di↵erent in several respects. Firstly, in [22] the focus is on mean
delays under Balanced fair resource allocation whereas here we directly study
the impact of fairness criteria on users delays. Secondly, the system considered
was by design symmetric whereas here we establish the asymptotic symmetry.
Thirdly, in this paper we establish new results on robustness to limited het-
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erogeneity in file demands, server capacity and ↵-fairness criteria by providing
a uniform bound on delays.

2 System Model

Our system consists of a set F of n classes. Jobs for class i 2 F arrive as
an independent Poisson process of rate �i. Let � = (�i : i 2 F ). Service
requirements of jobs are i.i.d exponential with mean ⌫. Let ⇢ = (⇢i : i 2 F ),
where ⇢i = �i⌫ is the load associated with class i. For example, if service
requirement of a job is measured in bits then the load for each class is measured
in bits per second.

Jobs arrive to the system at total rate
P

i2F �i. Let uk denote the job
corresponding to the kth arrival after time t = 0. Let qi(t) denote the set
of ongoing jobs of class i at time t, i.e., jobs which have arrived but have
not completed service, and q(t) = (qi(t) : i 2 F ). For each A ⇢ F , let
qA(t) = [i2Aqi(t), i.e., the set of all active jobs whose class is in A. Let
x(t) = (xi(t) : i 2 F ), where xi(t) , |qi(t)|, i.e., x(t) captures the number of
ongoing jobs in each class.

We refer to x(t) as the state of the system at time t. Let X(t) correspond
to the random vector describing the state of the system at time t. We refer to
the random process (X(t) : t � 0) as the state process. For any x(t), let A

x(t)

denote the set of active classes, i.e., the classes with at least one ongoing job.
Service Model: For any v 2 qi(t), let bv(t) be the rate at which job v is

served at time t. The vector b(t) = (bv(t) : v 2 qF (t)) represents the rates
assigned to ongoing jobs at time t. Within each class we assume that each job
is allocated equal rate, i.e., bv(t) = bu(t) for each u, v 2 qi(t). If job v arrives
at time tav and has service requirement ⌘v, then it departs at time tdv such that

⌘v =
R td

v

ta
v

bv(t)dt. Thus, tdv � tav is the delay for job v.

Further, let ri(x0) be the total rate at which class i jobs are served at time
t when x(t) = x0, i.e., at any time t, ri(x(t)) =

P

v2q
i

(t) bv(t). Let r(x0) =
(ri(x0) : i 2 F ). We call the vector function r(.) the rate allocation. Note that
the rate allocation at any time t depends only on the x(t) and thus can not
depend on the residual file sizes of ongoing jobs.

Polymatroid Capacity Region: We shall consider systems where rate allo-
cation r(x) for each x are constrained to be within a polymatroid capacity
region C.

Definition 1 We say that C is a polymatroid if it takes the following form:

C =

(

r � 0 :
X

i2A

ri  µ(A), 8A ⇢ F

)

,

where µ(.) is a set function which satisfies the following properties:
1) Normalized: µ(;) = 0.
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h(1)

h(1)

h(2)

Fig. 1 Symmetric polymatroids in two and three dimensions.

2) Monotonic: if A ⇢ B, µ(A)  µ(B).
3) Submodular: for all A,B ⇢ F ,

µ(A) + µ(B) � µ(A [B) + µ(A \B).

The function µ(.) is called a rank function.

Polymatroids and submodular functions are well studied in literature, see e.g.,
[8, 20].

Definition 2 A polymatroid C is a symmetric polymatroid if its rank function
µ(.) satisfies the following property: for each A ⇢ F , we have µ(A) = h(|A|),
where h : Z

+

! R
+

is a non-decreasing concave function, see Fig. 1.

For a given x, we say r(x) is feasible if r(x) 2 C; when this is true for all x,
we say that the rate allocation r(.) is feasible. We call C the capacity region of
the system. Symmetric polymatroid capacity regions appear in several systems,
for example, Gaussian symmetric multi-access channels [26]. Further, we will
see in Section 5 that certain types of large content delivery systems have
approximately symmetric polymatroid capacity regions.

Polymatroid capacity regions C have a special property that for any r 2 C,
there exists r0 � r such that r0 2 D , {r 2 C :

P

i2F ri = µ(F )} [8, 20]. Also,
as evident from the definition, for any A ⇢ F the set {r 2 C : ri = 0, 8i /2 A}
is also a polymatroid, with a rank function which is the restriction of µ(.) to
subsets of A.

Further, we let

Ĉ ,
(

⇢0 � 0 :
X

i2A

⇢0i < µ(A), 8A ⇢ F

)

, (1)

and will see, Ĉ is the set of loads which are stabilizable for appropriate rate
allocation policies.

Notation for ordering and majorization: In the sequel, we will rely on no-
tation for ordering and majorization which we introduce below.
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Let I be a finite arbitrary index set. Consider an arbitrary vector z = (zi :
i 2 I). We let z

[1]

� z
[2]

� . . . , z
[|I|] denote the components of z in decreasing

order. We let |z| denote
P

i2I |zi|. We let ei denote a vector with 1 at the ith

coordinate and 0 elsewhere.
For vectors z and z0 such that zi  z0i for each i 2 I, we write z  z0 and

say that z is dominated by z0.
Below we define majorization (�) which describes how ‘balanced’ a vector

is as compared to another vector. In words, by z � z0 we mean that z is ‘more
balanced’ than z0 but they have the same sum. By z �w z0 we mean that z
is ‘more balanced’ and has lower sum than z0. Similarly, by z �w z0 we mean
that z is ‘more balanced’ and has larger sum than z0.

Definition 3 For vectors z and z0 such that |z| = |z0| and
Pk

l=1

z
[l] 

Pk
l=1

z0
[l]

for each k 2 {1, 2, . . . , |I|}, we say z is majorized by z0, and denote this as
z � z0.

If we have
Pk

l=1

z
[l] 

Pk
l=1

z0
[l] for each k 2 {1, 2, . . . , |I|}, we say z is

weak-majorized from below by z0, and denote this as z �w z0.
Similarly, if we have

Pk
l=0

z
[|I|�l] �

Pk
l=1

z0
[|I|�l] for each k 2 {0, 1, . . . , |I|�

1}, we say z is weak-majorized from above by z0, and denote this as z �w z0.

The dominance and majorization have an associated stochastic version,
defined below.

Definition 4 Consider random vectors Z and Z0. If there exist random vec-
tors Z̃ and Z̃0 such that Z and Z̃ are identically distributed, Z0 and Z̃0 are
identically distributed, and Z̃0  Z̃0 almost surely, then we say that Z is
stochastically dominated by Z0, and denote this as Z̃ st Z̃0.

Instead, if Z̃0 �w Z̃0, then we say that Z stochastically weak-majorized from
below by Z0, and denote this as Z̃ �st

w Z̃0.

In the sequel, it will be useful to introduce following notation. Recall, r(x) =
(ri(x) : i 2 F ) is the vector of rates allocated to various classes. We define
r
(k)(.) for each k 2 {1, . . . , n} as follows: For a given state x, let ik be the
class corresponding to x

[k]. Then, r(k)(x) = ri
k

(x). In words, r
(k)(x) is the

rate allocated to the class with the kth largest number of ongoing jobs.
Notation for scaling: Consider sequences of numbers (fn : n 2 N) and

(gn : n 2 N). We say that fn = O(gn) if there exists a constant k > 0 and
an integer n

0

such that for each n � n
0

, we have fn  kgn. We say that
fn = ⌦(gn) if there exists a constant k > 0 and an integer n

0

such that for
each n � n

0

, we have fn � kgn.
We say that fn = o(gn) if limn!1

f
n

g
n

= 0. Similarly, we say that fn =

!(gn) if limn!1
g
n

f
n

= 0.

We say an event A happens with high probability (denoted as w.h.p.) if
P (A) is 1� o(1).

Several notations above are borrowed from [15], [26] and [21].



8 Virag Shah, Gustavo de Veciana

3 Rate Allocation Policies: A Background

There are several possible rate allocation policies, each resulting in potentially
di↵erent user-perceived delays. Below, we introduce three di↵erent policies
studied in literature, each with its own merits.

1) Greedy rate allocation: Roughly, the Greedy rate allocation policy on
a polymatroid capacity region C assigns the maximum possible rate to the
largest queues subject to the capacity constraints. We denote the Greedy rate
allocation by rG(.) and define it as follows: for each state x, we let

rG
(k)(x) = µ ({[1], [2], . . . , [k]})� µ ({[1], [2], . . . , [k � 1])

if k 2 {1, 2, . . . , |A
x

|},
= 0 otherwise.

Equivalently, the sum rate assigned to the k largest queues, namely
Pk

l=1

rG
(l)(x),

is equal to µ ({[1], [2], . . . , [k]}). Using a quadratic Lyapunov function, one can
show that Greedy rate allocation results in a stationary state process if ⇢ 2 Ĉ,
where Ĉ is defined in (1). The Greedy rate allocation for symmetric polyma-
troid capacity regions was first studied in [26] where the following result was
shown.

Proposition 1 ([26]) Suppose the capacity region C is a symmetric polyma-
troid and the load ⇢ 2 Ĉ is homogeneous, i.e., ⇢i = ⇢ for each i 2 F . Then the
following statements hold:

1. Let (XG(t) : t � 0) and (X̃(t) : t � 0) be state processes under Greedy and
an arbitrary feasible rate allocation, respectively. If XG(0) �st

w X̃(0) then
XG(t) �st

w X̃(t) for each t � 0.
2. The mean job delay under Greedy rate allocation is less than or equal to

that under any feasible rate allocation.

Unfortunately, this optimality result for symmetric systems does not provide
any explicit performance characterization or bound. Further, the result is brit-
tle to heterogeneity in load or capacity.

2) ↵-fair rate allocation: As introduced in [18], this policy allocates rates
based on maximizing a concave sum utility function subject to the system’s
capacity region. Formally, for a given ↵ > 0, the ↵-fair (↵F) rate allocation
r↵(.), can be defined as follows: for each state x, let

r↵(x) =

(

argmax
ˆr2C

P

i2F
x↵

i

r̂1�↵

i

1�↵ for ↵ 2 (0,1)\{1},
argmax

ˆr2C
P

i2F xi log(r̂i) for ↵ = 1.
(2)

This generalizes various notions of fairness across jobs, e.g., proportional fair
and max-min fair allocations are equivalent to the ↵-fair policy for ↵ = 1
and ↵ ! 1, respectively [18]. However, for polymatroid capacity regions the
following result has been established.
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Proposition 2 ([22]) All ↵-fair rate allocations are equivalent for polymatroid
capacity regions.

Further, the stability result in [24] implies that the ↵F rate allocation results in
a stationary state process when ⇢ 2 Ĉ. The ↵-fair rate allocation is attractive
in that it it is amenable to distributed implementation [11, 14] and satisfies
natural axioms for fairness [12]. Unfortunately, little is known regarding their
performance under stochastic arrivals. What has been shown is that for ↵-fair
allocations, the performance is sensitive to the distribution of service require-
ments [3]. Thus, it will be hard to make general claims. This leads us to the
Balanced fair rate allocation below.

3) Balanced fair rate allocation: As introduced in [3], the Balanced fair
(BF) rate allocation is ‘insensitive’, i.e., performance depends on the job service
distribution only through its mean. Further, as we will see, it is more amenable
to mean delay analysis. Formally, Balanced fair rate allocation rB(.) for a
polymatroid capacity region C can be defined as follows, see [3]: for each state
x, we have

rBi (x) =
�(x� ei)

�(x)
, 8i 2 F (3)

where the function � is called a balance function and is defined recursively as
follows: �(0) = 1, and �(x) = 0 8x s.t. xi < 0 for some i, otherwise,

�(x) = max
A⇢F

⇢

P

i2A �(x� ei)

µ(A)

�

. (4)

As shown in [3], (3) ensures the property of insensitivity, while (4) ensures that
r(x) for each x lies in the capacity region, i.e., the constraints

P

i2A ri(x) 
µ(A) are satisfied for each A. It also ensures that there exists a set B ⇢ A

x

for which
P

i2B ri(x) = µ(B). In fact the BF allocation is the unique policy
satisfying the above properties.

It was shown in [2, 3] that if ⇢ 2 Ĉ, the state process (XB(t) : t � 0) is
asymptotically stationary. Further, under this condition, its stationary distri-
bution is given by

⇡(x) =
�(x)

G(⇢)

Y

i2A
x

⇢xi

i where G(⇢) =
X

x

0

�(x0)
Y

i2A
x

0

⇢
x0
i

i .

The existence of such an expression for stationary distribution makes balanced
fairness amenable for time-averaged performance analysis, a property which
we will use extensively in the sequel. While, in general, BF may result in
wasteful resource allocation, e.g., BF is not Pareto e�cient for certain triangle
networks studied in [3], for polymatroid capacity regions BF has been shown
to be Pareto e�cient:

Proposition 3 ([22]) For polymatroid capacity regions C, BF rate allocation
is Pareto e�cient, i.e.,

P

i2A
x

rBi (x) = µ(A
x

) for each x.
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Using Pareto optimality, a recursive expression for mean delay was provided
in [22] for arbitrary polymatroid capacity region and load. The expression can
be significantly simplified under symmetry, as also shown below. First, let

⇡k =
X

x:|A
x

|=k

⇡(x),

i.e., ⇡k is the stationary probability that there are k active classes in the
system. Then, under symmetry, the following expression was shown to hold
for ⇡k in [22]. We provide a (slightly di↵erent) proof below for the sake of
completion.

Proposition 4 ([22]) For a system with symmetric polymatroid capacity re-
gion, with load ⇢i = ⇢ for each class i 2 F , and with balanced fair rate alloca-
tion, we have

⇡
0

=
1

1 +
Pn

k=1

Qk
l=1

(n�l+1)⇢
h(l)�l⇢

, (5)

and for k = 1, . . . , n we have

⇡k =
(n� k + 1)⇢

h(k)� k⇢
⇡k�1

. (6)

Equivalently, for k = 1, . . . , n, we have

⇡k = ⇡
0

k
Y

l=1

(n� l + 1)⇢

h(l)� l⇢
. (7)

Proof It is enough to show that for each k � 1 we have

⇡kh(k) = (n� k + 1)⇢⇡k�1

+ k⇢⇡k. (8)

There are two ways to argue that the above expression holds: (1) using PASTA
and time reversibility, and (2) using the stationary distribution expression via
balance function. We summarize both approaches below.

Note that ⇡kh(k) =
P

|x|:|A
x

|=k ⇡(x)h(k) is the total rate of departures
from states with k active classes. In reverse time these departures correspond
either to (1) the arrivals to the system which see k � 1 active classes and
cause an increase in the number of active classes, or to (2) arrivals which see k
active classes and do not cause an increase the number of active classes. Since
arrivals in the reverse time form a Poisson process, PASTA holds, and the
rates of above transitions is equal to (n� k + 1)⇢⇡k�1

and k⇢⇡k respectively.
Thus we get (8).

Alternatively, from definition and Proposition 3 we have

⇡k = ⇡
0

X

x:|A
x

|=k

�(x)⇢|x| = ⇡
0

X

x:|A
x

|=k

P

i2A
x

�(x� ei)

µ(A
x

)
⇢|x|

=
⇡
0

⇢

h(k)

X

x:|A
x

|=k

X

i2A
x

�(x� ei)⇢
|x�e

i

|.
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This can be shown to simplify to the following:

⇡k =
⇡
0

⇢

h(k)
(n� k + 1)

X

x:|A
x

|=k�1

�(x)⇢|x| +
⇡
0

⇢

h(k)
k

X

x:|A
x

|=k

�(x)⇢|x|.

Upon simplification we get (8). ut
Now, let �k = E

⇥

|X|
�

�|A
X

| = k
⇤

, i.e., �k =
P

x:|A
x

|=k

|x|⇡(x)
⇡
k

. There exists
a surprisingly simple expression for �k using which an explicit expression for
mean delay can obtained, as given by the following theorem.

Theorem 1 Consider a system with symmetric polymatroid capacity region,
and with load ⇢i = ⇢ for each class i 2 F . Under balanced fair rate allocation,
let �k = E

⇥

|X|
�

�|A
X

| = k
⇤

. Then, for k = 1, . . . , n we have,

�k =
k
X

l=1

h(l)

h(l)� l⇢
. (9)

Further, if the arrival rate for each class is equal to � then mean delay for jobs
under balanced fairness can be given as

E[DB ] =
1

�n

n
X

k=1

�k⇡k, (10)

where ⇡k can be computed using (5) and (7).

Proof We provide a proof for the expression for �k. The expression for mean
delay then follows from Little’s law. From definition and Proposition 3 we have

(�k�1)⇡k =
X

x:|A
x

|=k

(|x|�1)�(x)⇢|x| =
X

x:|A
x

|=k

(|x|�1)

P

i2A
x

�(x� ei)

µ(A
x

)
⇢|x|

=
⇢

h(k)

X

x:|A
x

|=k

(|x|� 1)
X

i2A
x

�(x� ei)⇢
|x�e

i

|.

This can be shown to simplify to the following:

(�k�1)⇡k =
⇢

h(k)
(n�k+1)

X

x:|A
x

|=k�1

|x|�(x)⇢|x|+ ⇢

h(k)
k

X

x:|A
x

|=k

|x|�(x)⇢|x|,

which in turn gives

�k � 1 =
(n� k + 1)⇢⇡k�1

⇡kh(k)
�k�1

+
k⇢⇡k

⇡kh(k)
�k. (11)

Upon further simplification, one obtains

�k =
h(k)

h(k)� k⇢
+

(n� k + 1)⇢

h(k)� k⇢

⇡k�1

⇡k
�k�1

=
h(k)

h(k)� k⇢
+ �k�1

,

where the last equality follows from (6). From this (9) follows.
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Paralleling the discussion for expression (8), (11) can also be argued di-
rectly using PASTA and time reversibility. In this case �k�1 can be interpreted
as the mean number of jobs a departure leaves behind it when the system has k
active classes. Recalling the argument for (8), in reverse time, (n�k+1)⇢⇡

k�1

⇡
k

h(k) is
the fraction of arrivals which result in k active classes by increasing the number
of active classes by 1. Note that the rate of such arrivals do not depend on the
precise state of the system. Thus, using ‘ratio of rates’ argument, see [25], the
mean number of customers seen by these arrivals is �k�1

. Similarly, one can
argue that the remaining fraction k⇢⇡

k

⇡
k

h(k) of arrivals which see k active classes

see a mean number of jobs as �k. Thus, the expression (11) follows. ut
In the sequel, we use several other properties of balanced fairness and also

of other rate allocation policies, some of which are provided in Section 8.1.

4 Performance Bounds

Recall that for each rate allocation policy considered in Section 3, namely
Greedy, ↵F, and BF, the underlying state process is asymptotically stationary
if the load ⇢ 2 Ĉ. Thus the corresponding mean delays of the system’s jobs
are finite. In this section, we assume that the capacity region C is symmetric,
and develop explicit and easily computable bounds on the mean delay of jobs
in systems with Greedy or ↵F rate allocation under potentially heterogeneous
load ⇢ within a subset of the stability region Ĉ.

Our goal here is to enable performance analysis for a general enough class
of systems so as to allow us to develop quantitative and qualitative insights
for large-scale systems prevalent today. For example, the bounds developed
below will enable us to later characterize user-performance in downloading
files from heterogeneous (in loads and service capacities) large-scale content
delivery systems supporting resource pooling.

Below we develop upper bounds for mean delay for the following three
cases:

(i) Homogeneous loads: We provide an upper bound for mean delay for loads

⇢ 2 Ĉ which are homogeneous across classes with non-zero entries, i.e., if
A is the set of classes such that ⇢i > 0 for each i 2 A, then ⇢i = ⇢j for
each i, j 2 A.

(ii) Dominance bound: Consider loads ⇢,⇢0 2 Ĉ such that ⇢  ⇢0 and ⇢0 is
homogeneous across non-zero entries as described above. Then, we show
that the system with load ⇢ has lower mean delay than that with load ⇢0,
even if ⇢ is heterogeneous.

(iii) Majorization bound: Consider loads ⇢,⇢0 2 Ĉ such that ⇢ � ⇢0. Fur-
ther, suppose that ⇢0 is homogeneous across non-zero entries as described
above. Then, we show that the system with load ⇢ has lower mean delay
than that with load ⇢0.

Throughout this section, we will assume that the mean service requirements
for jobs ⌫ is same for each system. The bound for homogeneous loads and the
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majorization bound are provided below for both, ↵F and Greedy, whereas the
dominance bound is provided for ↵F. Next we will also develop a lower bound
for mean delay for each rate allocation policy under arbitrary loads.

Note that using the majorization bound we can bound mean delay for a
larger subset of heterogeneous loads as compared to the dominance bound.
For example, consider ⇢ = (⇢, 1

2

⇢, 1

2

⇢). Recall, for symmetric rank functions
we have µ(A) = h(|A|) for each A ⇢ F , where h(.) is concave. Now, if 1

3

h(3) <

⇢ < 1

2

h(2), then ⇢0 = (⇢, ⇢, 0) is in Ĉ but ⇢00 = (⇢, ⇢, ⇢) is not. Then the
majorization bound holds for ⇢ but the dominance bound does not. Further,
even if ⇢00 is in Ĉ, the upper bound obtained through ⇢0 may be tighter.

The bounds for each case will be obtained through coupling arguments on
the corresponding state processes, followed by an application of Little’s law.

4.1 Homogeneous Loads

Consider the following set of loads:

BH , {⇢ 2 Ĉ : 9A ⇢ F s.t. ⇢i = ⇢j 8i, j 2 A and ⇢i = 0 8i 2 F\A}.

Since by Proposition 1 the Greedy rate allocation is delay optimal for ho-
mogeneous loads, for each ⇢ 2 BH one can immediately conclude that the
performance of BF as obtained in Theorem 1 is an upper bound for Greedy.
Below we show that this performance upper bound via BF also holds for ↵F
rate allocation.

To that end we show a coupling result for systems under ↵F and BF rate
allocations. In the process, we prove and use the property that ↵F is more
greedy than BF in the following sense: if the state process corresponding to
↵F is same as or more balanced than that of BF, then ↵F assigns larger rate
to bigger queues than BF. This in turn keeps the state process for ↵F more
balanced in the future. For a proof of the theorem below see Section 4.5.

Theorem 2 Consider a system with symmetric polymatroid capacity region
and load ⇢ 2 BH , i.e., ⇢ is homogeneous across classes with non-zero entries.
Then the following statements hold:

1. Let (X↵(t) : t � 0) and (XB(t) : t � 0) be state processes under ↵F and
BF rate allocation. If X↵(0) �w XB(0) then we have X↵(t) �st

w XB(t) for
each t � 0.

2. The mean delays for systems with ↵F and BF rate allocation for load
⇢ 2 BH satisfy the following:

E[D↵
⇢ ]  E[DB

⇢ ].

4.2 Dominance Bound

Consider the following rate allocation property. Recall, r
i

(x)

x
i

is the rate allo-
cated to each job in class i when the system is in state x.
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Definition 5 (Per-job rate monotonicity) We say that a rate allocation
r(.) satisfies per-job rate monotonicity if the following holds for all states x

and x0 such that x � x0: for each class i, we have r
i

(x)

x
i

 r
i

(x

0
)

x0
i

. In words,

adding jobs into the system only decreases the rate allocated to each job.

From the definition of ↵F, one can check that ↵F rate allocation satisfies
per-job rate monotonicity. This property was used in [4] to provide a compar-
ison result for systems where the rate allocation in one system dominates that
in another system for each state x. In contrast, we provide below a comparison
result for systems with same rate allocation policy and capacity region, but
with di↵erent loads. For such systems, we show that the larger loads result
into worse delays if the rate allocation satisfies per-job rate monotonicity. For
a proof of the theorem below see Section 4.5.

Theorem 3 Consider a system with symmetric polymatroid capacity region
C. Suppose that the rate allocation r(.) satisfies per-job rate monotonicity. Let
⇢,⇢0 2 Ĉ (recall, Ĉ is stability region) be such that ⇢  ⇢0. Then the following
statements hold:

1. Let (X(t) : t � 0) and (X0(t) : t � 0) be state processes under loads ⇢ and
⇢0. If X(0)  X0(0), then we have X(t) st X0(t) for each t � 0.

2. For systems with loads ⇢ and ⇢0, the mean delays for jobs for each class
i 2 F satisfy the following:

E[D(⇢)
i ]  E[D(⇢0

)

i ]

The above result holds for ↵F since it satisfies per-job rate monotonicity.
However, one can check that the Greedy rate allocation does not satisfy per-
job rate monotonicity in general. Thus, it is not clear if such a bound holds
for Greedy.

Now, if ⇢0 is homogeneous, then under ↵F rate allocation we have an
explicit bound for mean delays via Theorem 2. Thus, consider the following
region:

BD , {⇢ 2 Ĉ : 9⇢0 2 BH s.t. ⇢  ⇢0},
or equivalently,

BD ,
⇢

⇢ 2 Ĉ : max
i

⇢i <
h(k)

k
where k = |{i : ⇢i > 0}|

�

.

Theorem 3 implies that the mean delay under ↵F rate allocation for each load
⇢ 2 BD can be bounded by that for a corresponding symmetric load ⇢0 2 BH ,
which in turn has an easily computable bound. Thus, we get the following
corollary.

Corollary 1 Consider a system with symmetric polymatroid capacity region
and load ⇢ 2 BD. Let ⇢0 = maxi ⇢i. Let ⇢0 be such that for each i 2 F we have
⇢0i = ⇢0 if ⇢i > 0 and ⇢0i = 0 if ⇢i = 0. Then, mean delay for a system with ↵F
rate allocation for load ⇢ satisfies the following:

E[D↵
⇢ ]  E[DB

⇢0 ].
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4.3 Majorization Bound

The theorem below generalizes the Dominance bound to provide a mean delay
bound for a system with load ⇢ such that there exists ⇢0 2 BH which satisfies
⇢ � ⇢0.

Its proof is similar to that of Theorem 2, where instead of relative greediness
between rate allocations, we use the following balancing property satisfied by
both ↵F and Greedy: if state x is more balanced than state x0, then the
rate allocation r(.) would provide larger rates to longer queues in state x as
compared to x0, and thus balancing it even further. For a proof of the theorem
below see Section 4.5.

Theorem 4 Consider a system with symmetric polymatroid capacity region
C. The rate allocation r(.) is either ↵F or Greedy. Let ⇢,⇢0 2 Ĉ be such that
⇢ � ⇢0 and ⇢0 2 BH , i.e., ⇢0 is homogeneous across classes with non-zero
entries. Then the following statements hold:

1. Let (X(t) : t � 0) and (X0(t) : t � 0) be state processes under loads ⇢ and
⇢0. If X(0) �w X0(0), then we have X(t) �st

w X0(t) for each t � 0.
2. The mean delays for systems with loads ⇢ and ⇢0 satisfy the following:

E[D⇢]  E[D⇢0 ]

Theorem 4 above is stronger than Theorem 3 in the sense that it only requires
the condition ⇢ �w ⇢0 instead of ⇢  ⇢0. However, it is weaker in the sense
that it requires ⇢0 to be in BH and that it gives stochastic weak-majorization
of the corresponding state processes instead of stochastic dominance.

For both rG(.) and r↵(.), Theorem 4, along with Theorem 2 and Proposi-
tion 1, allows us to bound the mean delay for any load in the following region:

BM , {⇢ 2 Ĉ : 9⇢0 2 BH s.t. ⇢ � ⇢0},
or equivalently,

BM ,
⇢

⇢ 2 Ĉ : 9k  n s.t. max
i

⇢i <
h(k)

k
and |⇢| < h(k)

�

.

Theorem 4 implies that for ↵F and Greedy rate allocation, the mean delay for
each load ⇢ 2 BM can be bounded by that for a corresponding load ⇢0 2 BH ,
which in turn has an easily computable bound through Theorem 2. Thus, we
get the following corollary.

Corollary 2 Consider a system with symmetric polymatroid capacity region

and load ⇢ 2 BM . Let ⇢0 = maxi2F ⇢i. Let k = min{l : ⇢0  h(l)
l and |⇢| 

h(l)}. Let A be an arbitrary subset of F of size k and ⇢0 be such that ⇢0i =
⇢0 8i 2 A and ⇢0i = 0 otherwise. Then, the mean delays for systems with
Greedy and ↵F rate allocations for load ⇢ satisfy the following:

E[DG
⇢ ]  E[DB

⇢0 ], and E[D↵
⇢ ]  E[DB

⇢0 ].

It is easy to check that for each ⇢ 2 BM the computation of the mean delay
upper bound as given by Corollary 2 has complexity O(n) when computed
using Theorem 1.
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4.4 Lower bound

The following proposition provides a lower bound on the mean delay for any
system with symmetric polymatroid capacity region, a feasible rate allocation
policy, and with arbitrary loads. See Section 4.5 for a proof.

Proposition 5 Consider a system with a symmetric polymatroid capacity re-
gion C with rank function µ(A) = h(|A|) for each A ⇢ F , an arbitrary feasible
rate allocation policy, and with load ⇢ 2 Ĉ, i.e., the system is stabilizable. Let
the total arrival rate for jobs, i.e.

P

i2F �i, be equal to �n. Then, the following
lower bound on the mean delay holds:

E[D] � 1

�n

0

@

Pn
k=1

k |⇢|k
Q

k

l=1 h(l)

1 +
Pn

k=1

|⇢|k
Q

k

l=1 h(l)

1

A .

4.5 Proofs of Coupling Results

Proof of Theorem 2: Consider the following lemma regarding relative greedi-
ness of ↵F and BF.

Lemma 1 Consider states x and y such that x �w y. For each k such that
Pk

l=1

x
[l] =

Pk
l=1

y
[l], we have

Pk
l=1

r↵
(l)(x) �

Pk
l=1

rB
(l)(y).

Roughly, it asserts that if state x is same or more balanced than state y, then
the sum rate assigned to larger queues by ↵F to state x is greater than that by
BF to state y. Proof of this lemma is given in Section 8.1. Below, we provide
a detailed coupling argument showing stochastic weak-majorization using this
lemma.

Coupling Argument: Without loss of generality, assume ⌫ = 1. Suppose

X↵(0) �w XB(0). Below, we couple the arrivals and departures of processes
(X↵(t) : t � 0) and (XB(t) : t � 0) such that their marginal distributions
remain intact and X↵(t) �w XB(t) almost surely for each t � 0.

Let⇧a be a Poisson point process with rate
P

i2F �i, and let⇧d be Poisson
point process with rate µ(F ). The points in these processes are the times of
‘potential events’ in (XB(t) : t � 0) and (X↵(t) : t � 0). We use ⇧a to couple
arrivals and ⇧d to couple departures. For each time t0 when a potential event
occurs, let ✏t0 be a small enough number such that no potential event occurred
in the time interval of [t0 � ✏t0 , t0).

Coupling of arrivals: For each point t0 in ⇧a, do the following: Choose
a random variable Zt0 independently and uniformly from {1, . . . , n}. Let an
arrival occur in (X↵(t) : t � 0) at time t0 in the Zth

t0 largest queue ofX↵(t0�✏t0).
Ties are broken uniformly at random. Similarly, let an arrival occur in (X↵(t) :
t � 0) at time t0 in the Zth

t0 largest queue of X↵(t0�✏t0). Again, ties are broken
uniformly at random.
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Coupling of departures: For each point t0 of increment in ⇧d, do the follow-
ing: Choose a random variable Zt0 independently and uniformly from interval
(0, µ(F )]. For k such that

Zt0 2
 

k�1

X

l=1

r↵
(l)(X

↵(t0 � ✏t0)),
k
X

l=1

r↵
(l)(X

↵(t0 � ✏t0))

#

,

let a departure occur in (X↵(t) : t � 0) at time t0 in the kth largest queue of
X↵(t0 � ✏t0), with ties broken uniformly and independently at random.

Similarly, for k such that

Zt0 2
 

k�1

X

l=1

rB
(l)(X

B(t0 � ✏t0)),
k
X

l=1

rB
(l)(X

B(t0 � ✏t0))

#

,

let a departure occur in (XB(t) : t � 0) at time t0 in the kth largest queue of
XB(t0 � ✏t0), with ties broken uniformly and independently at random. Note
that in both cases it is possible that no such k exists since some classes may
not be active and the total service rate may be less than µ(F ). In that case,
no departure occurs.

It can be checked that the marginal distributions of (X↵(t) : t � 0) and
(XB(t) : t � 0) remain intact. We now show that X↵(t) �w XB(t) almost
surely for each t.

It is easy to check that if an arrival occurred at time t0 and if X↵(t) �w

XB(t) for each t < t0, then X↵(t0) �w XB(t0) as well. We now show that the
same holds for points of ⇧d as well.

Suppose a potential departure occurred at t0, and X↵(t) �w XB(t) for each

t < t0. We show below that
Pk

l=1

X↵
[l](t

0) 
Pk

l=1

XB
[l](t

0) for each k. Here, we
use Lemma 1. Following two cases arise.

Case 1:
Pk

l=1

X↵
[l](t

0 � ✏t0) <
Pk

l=1

XB
[l](t

0 � ✏t0). Since a maximum of one

departure occurs at time t0 in either processes, we clearly have
Pk

l=1

X↵
[l](t

0) 
Pk

l=1

XB
[l](t

0).

Case 2:
Pk

l=1

X↵
[l](t

0 � ✏t0) =
Pk

l=1

XB
[l](t

0 � ✏t0). By using X↵(t � ✏t0) �w

XB(t� ✏t0) in Lemma 1 and from the definition of the coupling at time t0, it
can be shown that if a departure occurs from any of the k largest queues in
XB(t0 � ✏t0), then it also occurs in one of the k largest queues in X↵(t0 � ✏t0).

Thus,
Pk

l=1

X↵
[l](t

0) 
Pk

l=1

XB
[l](t

0).
Hence the first part of the theorem follows. Second part follows by appli-

cation of Little’s law on (|X↵(t)| : t � 0) and (|XB(t)| : t � 0). ut
Proof of Theorem 3: Suppose X(0)  X0(0). Below, we couple the arrivals

and departures of jobs in (X(t) : t � 0) and (X0(t) : t � 0) such that their
marginal distributions remain intact and X(t)  X0(t) almost surely for each
t � 0.

Since mean service requirement of jobs ⌫ is same for both the systems,
the corresponding arrival rates satisfy �  �0. For each i let ⇧i and ⇧ 0

i be



18 Virag Shah, Gustavo de Veciana

the Poisson arrival processes for class i in the respective systems. Let ⇧i be
obtained by sampling ⇧ 0

i. For each class i, the arrivals in (X0(t) : t � 0) at the
sampled points, i.e., points in ⇧i, see the average delay which is equal to the
overall average delay of jobs in ⇧ 0

i for this system. Thus, the theorem follows
if we couple the departures of jobs in both the systems such that for each
point in ⇧i, the corresponding job departure in (X(t) : t � 0) is no later than
that in (X0(t) : t � 0). By using per-flow rate monotonicity property, one can
couple the service rate of these jobs at each time t so that if such a job departs
from (X0(t) : t � 0) than the corresponding job departs from (X(t) : t � 0) as
well, if it hasn’t already. ut

Proof of Theorem 4: The theorem can be proved in a fashion similar to that
of Theorem 2, except for the following changes. For notational convenience,
for each time t let �

(k)(t) and �0
(k)(t) be the arrival rates of kth largest queues

in X(t) and X0(t) respectively, with ties broken arbitrarily.

1. Coupling of arrivals: For each point t0 in ⇧a, we choose a random variable
Zt0 independently and uniformly from interval (0, |�|]. For each k such that

Zt0 2
 

k�1

X

l=1

�
(l)(t

0 � ✏t0),
k
X

l=1

�
(l)(t

0 � ✏t0)

#

,

let an arrival occur in (X(t) : t � 0) at time t0 in the kth largest queue of
X(t0 � ✏t0). Similarly, for each k such that

Zt0 2
 

k�1

X

l=1

�0
(l)(t

0 � ✏t0),
k
X

l=1

�0
(l)(t

0 � ✏t0)

#

,

let an arrival occur in (X0(t) : t � 0) at time t0 in the kth largest queue of
X0(t0 � ✏t0).

2. Coupling of departures: Similar to that of Theorem 2, except that instead
of Lemma 1 for a proof of weak-majorization upon a potential departure,
we use the following lemma which asserts that ↵F and Greedy provide
larger rate to longer queues in more balanced states.

Lemma 2 Consider states x and y such that x �w y. For each k such
that

Pk
l=1

x
[l] =

Pk
l=1

y
[l], we have

Pk
l=1

r↵
(l)(x) �

Pk
l=1

r↵
(l)(y), and also

Pk
l=1

rG
(l)(x) �

Pk
l=1

rG
(l)(y).

For rG(.), is easy to check that the lemma holds. For r↵(.), it follows from
Lemma 9 in Section 8.1.

Hence the result follows. ut
Proof of Proposition 5: Consider a queue where the jobs arrive as a Poisson

point process with rate �n. The bu↵er size is finite and equal to n. Thus, an
arrival is blocked if there are already n ongoing jobs in the queue. Service
requirements of jobs are i.i.d. exponential with rate ⌫. The total service rate
of jobs at each time is state dependent, as follows: if there are x̃(t) ongoing
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jobs in the queue at time t then the total service rate at time t is equal to
h(x̃(t)). One can check that the mean number of jobs in a stationary regime
for this system is given by:

E[X̃] =

Pn
k=1

k |⇢|k
Q

k

l=1 h(l)

1 +
Pn

k=1

|⇢|k
Q

k

l=1 h(l)

It is easy to check that for a given total number of ongoing jobs, the overall
service rate in the above queue is greater than or equal to that in the original
system with symmetric polymatroid capacity region. Thus, one can couple the
arrivals and departures of the two systems such that the above queue has a
lower than or equal number of active jobs at each time as compared to the
original system. The result then follows by applying Little’s law to the original
system. ut

5 Large System has Approximately Symmetric Capacity

In this section we consider a large content delivery system employing resource
pooling and show that such a system not only has polymatroid capacity but
under appropriate assumptions becomes approximately symmetric.

Consider a sequence of bipartite graphs G(n) = (F (n) [ S(n);E(n)) where
F (n) is a set of n files, S(n) is a set of m = dbne servers for some constant b,
and each edge e 2 E(n) connecting a file i 2 F (n) and server s 2 S(n) implies

that a copy of file i is available at server s. For each node s 2 S(n), let N (n)
s

denote the set of neighbors of server s, i.e., the set of files it stores and can
serve. Henceforth, wherever possible, we will avoid the use of ceil and floor
notations to avoid clutter.

We associate each file in F (n) to a class of jobs where the job corresponds to
a download request for that file.. The arrival processes and service requirements
for the jobs are as described in Section 2, with �(n) and ⇢(n) representing the
corresponding arrival rates and loads. Further, we let the service capacity of
each server s 2 S(n) be µs bits per second.

We allow each server s 2 S(n) to concurrently serve the jobs with classes

N (n)
s as long as the total service rate does not exceed µs. The service rate

for each job is the sum of the rates it receives from di↵erent servers. For any
A ⇢ F (n), let µ(n)(A) be the maximum sum rate at which jobs with file-class
in A could be served, i.e.,

µ(n)(A) ,
X

s2S(n)

1n

A\N
(n)
s

6=;
oµs.

Clearly any rate allocation r(.) for such a system must satisfy the following
constraints for each state x: 8A ⇢ F (n),

X

i2A

ri(x)  µ(n)(A).
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Fig. 2 Graph G(n) = (F (n) [S(n);E(n)) modeling the placement of copies of n files across
m = dbne servers with finite service capacities in a content delivery system.

It was shown in [21] that µ(n)(.) is submodular and that the corresponding
polymatroid

C(n) ,
(

r � 0 :
X

i2A

ri  µ(n)(A), 8A ⇢ F (n)

)

is indeed the capacity region for such a system, i.e., each r 2 C(n) is achievable.
Note that C(n) will in general be an asymmetric polymatroid depending

upon edges E(n) and service capacities µs for each s 2 S(n). However, we
show below that if copies of files are stored across servers at random and scaled
appropriately with n then, as n increases, a uniform law of large numbers hold
where C(n) gets uniformly close to a symmetric polymatroid, subject to the
following assumptions:

Assumption 1 (Heterogeneous server capacities) S(n) is partitioned into
a finite number of groups where each group has ⌦(n) number of servers.
Within each group, the server capacities are homogeneous. The server capaci-
ties across groups may be heterogeneous such that average of service capacity
across servers

⇠ , 1

m

X

s2S(n)

µs

is independent of n.

Assumption 2 (Randomized file placement) Let (cn : n 2 N) be a se-
quence such that

cn = !(log n).

For each file i 2 F (n), store a copy in cn di↵erent servers chosen uniformly
and independently at random.

A randomized placement of file copies implies a random system configu-
ration, i.e., a random graph which we denote as G(n) = (F (n) [ S(n); E(n)).

Similarly, for each s 2 S(n), let N (n)
s denote the random set of neighbors of s,
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i.e., the random set of files stored in server s. Let M (n)(.) denote the corre-
sponding random rank function, and µ(n)(.) a possible realization. Then, for
each A ⇢ F (n), we have

M (n)(A) =
X

s2S(n)

1n

A\N (n)
s

6=;
oµs,

where 1n

A\N (n)
s

6=;
o is now a Bernoulli random variable indicating if a copy

of at least one of the files in A is placed in s. In fact, for each A ⇢ F (n)

such that |A| = k, the set

⇢

1n

A\N (n)
s

6=;
o : s 2 S(n)

�

is a set of m negatively

associated Bernoulli(p(n)k ) random variables [7] where p(n)k is the probability
that a given server is assigned at least one of the kcn copies of files in A. Since
the probability that a server does not have a copy of a file is equal to 1� c

n

m ,
we have

p(n)k = 1�
⇣

1� cn
m

⌘k

8k = 0, 1, . . . , n.

By linearity of expectation, for each A ⇢ F (n), we have

µ̄(n)(A) , E[M (n)(A)] = ⇠mp(n)|A| .

Note, µ̄(n)(A) depends on A only through |A| and is thus symmetric. The
theorem below shows that with high probability we can bound the random
rank function M (n)(.) uniformly over all A ⇢ F (n), from above as well as
from below, with a symmetric rank function which is close to µ̄(n)(A). See
Section 5.1 for a proof.

Theorem 5 Fix ✏ independent of n such that 0 < ✏ < 1. Consider a sequence
of systems with n files and m = dbne servers, where b > 0 is a constant. Under
Assumptions 1 and 2, let M (n)(.) be the corresponding random rank function.
Then, there exists a sequence (gn : n 2 N) such that gn = !(log n), and

P
⇣

9A ⇢ F (n) s.t. M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

 e�g
n ,

and
P
⇣

9A ⇢ F (n) s.t. M (n)(A) � (1 + ✏)µ̄(n)(A)
⌘

 e�g
n .

This result gives us following corollary on the random capacity region as-
sociated with M (n)(.) generated by random file placement. Recall, µ̄(n)(A) =
E[M (n)(A)] for all A ⇢ F (n), and let

C̄(n) ,
(

r � 0 :
X

i2A

ri  µ̄(n)(A), 8A ⇢ F (n)

)

.

Thus C̄(n) is the (symmetric) capacity region associated with the average rank
function µ̄(.). Then, the following holds:



22 Virag Shah, Gustavo de Veciana

Corollary 3 Fix ✏ independent of n such that 0 < ✏ < 1. Under Assump-
tions 1 and 2, the random capacity region associated with G(n) is a subset of
(1 + ✏)C̄(n) and a superset of (1� ✏)C̄(n) with high probability.

Further, under Assumption 1, there exists a deterministic file placement
where cn = !(log n) copies of each file are stored across servers such that the
corresponding capacity region C(n) is a subset of (1 + ✏)C̄(n) and a superset of
(1� ✏)C̄(n).

5.1 Proof of Theorem 5

Here, we will only show

P
⇣

9A ⇢ F (n) s.t. M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

 e�g
n ,

The other bound follows in similar fashion.
For now, suppose µs = ⇠ for each s 2 S(n). We relax this assumption later.
We first provide a bound for P

�

M (n)(A)  (1� ✏)µ̄(n)(A)
�

for each A ⇢
F (n). Then, for each k = 1, 2, . . . , n, we use union bound to obtain a uniform
bound over all sets A ⇢ F (n) such that |A| = k. The bound we provide for
P
�

M (n)(A)  (1� ✏)µ̄(n)(A)
�

is small enough so that the above union bound
is small too. Then, yet another use of the union bound would give us the
uniform result over all sets A ⇢ F (n).

Now, if the random variables

⇢

1n

A\N (n)
s

6=;
o : s 2 S(n)

�

were independent

Bernoulli(p(n)k ), then the following two concentration results would hold [17]:
Fix k 2 {1, . . . , n}. For each set A ⇢ F (n) such that |A| = k, we have

P
⇣

M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

 e�
✏

2

2 mp
(n)
k , (12)

and,

P
⇣

M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

 e
�mH

⇣

p
(n)
k

(1�✏)||p(n)
k

⌘

, (13)

where H(p||q) is the KL divergence between Bernoulli(p) and Bernoulli(q)
random variables, given by

H(p||q) = p log

✓

p

q

◆

+ (1� p) log

✓

1� p

1� q

◆

.

However, in reality, since

⇢

1n

A\N (n)
s

6=;
o : s 2 S(n)

�

are negatively asso-

ciated Bernoulli(p(n)k ) random variables, the above Cherno↵ bounds still ap-
ply [7].

In the sequel, we will use the following two technical lemmas. Their proofs
are provided in the Section 8.3.
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Lemma 3 Let a sequence (gn : n 2 N) be such that gn = o(cn). Let �1 < 1 be
a positive constant independent of k and n. Then, for large enough n, we have

p(n)k � �
1

gn
n

k 8k 2
⇢

0, 1, . . . ,

�

n

gn

⌫�

.

Lemma 4 There exists a positive constant �, independent of k and n, such

that H
⇣

p(n)k (1� ✏)||p(n)k

⌘

� �� + ✏kcnm .

Now, let (gn : n 2 N) be a sequence such that gn , (cn log n)1/2 for each
n. The following properties of gn can be easily checked:

gn = !(log n) and gn = o(cn). (14)

We now provide a uniform bound over all sets A ⇢ F (n) such that |A| = k for
each k 2 {1, . . . , n}, under following two cases.

Case 1: 0  k  n
g
n

: From Lemma 3, for each k we have

p(n)k � �
1

kgn
n

,

for a suitably chosen positive constant �
1

independent of n. In the sequel, �i
for any i � 1 will be a suitably chosen positive constant independent of n.

Using the concentration result (12), for |A| = k we get

P
⇣

M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

 e�
✏

2

2 �1bkgn ,

and using the union bound, we get

P
⇣

9A ⇢ F (n) s.t. |A| = k and M (n)(A)  (1�✏)µ̄(n)(A)
⌘

 e�
✏

2

2 �1bkgn

✓

n

k

◆

 e�
✏

2

2 �1bkgn+k logn  e��2kgn ,

for a constant �
2

less than ✏2

2

�
1

b.
Case 2: n

g
n

< k  n: In this case, we use the concentration result (13).
From Lemma 4, there exists a constant �

6

such that

P
⇣

M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

 e(�6m�✏kc
n

).

Since gn = o(cn), for n large enough we get �
6

m  (✏/2)ncng
n

. Also, for each

k > n
g
n

, we have (✏/2)ncng
n

 (✏/2)kcn. Thus, for large enough n, �
6

m� ✏kcn 
�(✏/2)kcn for each k such that n

g
n

< k  n, and consequently there exists a
constant �

7

such that,

P
⇣

M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

 e��7kcn
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By using the union bound, for large enough n, we get

P
⇣

9A ⇢ F (n) s.t. |A| = k and M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

 e��7kcn

✓

n

k

◆

 e��7kcn+k logn  e��8kcn ,

for a constant �
8

less than �
7

. Combining the above two cases, we can show
that for large enough n there exists a positive constant �

9

such that for each
k 2 {1, . . . , n} we have

P
⇣

9A ⇢ F (n) s.t. |A| = k and M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

 e��9gn .

Using the union bound again, we get

P
⇣

9A ⇢ F (n) s.t. M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

 ne��9gn  e��9gn+logn

 e��10gn ,

for a constant �
10

less than �
9

. Now, we relax the assumption µs = ⇠ for each
s 2 S(n) with Assumption 1. The above proof can then be used to show a
similar concentration result for individual groups. The overall result follows
by linearity of expectation and yet another use of the union bound. ut

6 Performance Robustness

We now combine results from Section 4 and Section 5 to exhibit performance
robustness in large-scale content delivery systems. In Section 5, we showed that
large systems support symmetric polymatroid capacity regions. This allows
us to apply the performance bounds developed in Section 4 for symmetric
polymatroid capacity regions.

However, there is one more hurdle to overcome before we can apply our
bounds from Section 4. Recall, from Corollary 3, under Assumptions 1 and
2 the random capacity region for a content delivery system contains and is
contained by approximate symmetric polymatroids with high probability. A
realization of the random capacity region may still not be symmetric. We thus
need to show that if the capacity region is bigger then the corresponding mean
delay is smaller when subject to the same load.

Intuitively, larger capacity regions may imply larger service rates for each
class, and may thus provide better performance. Although intuitively obvi-
ous, such results are not always straightforward. We show below that such a
comparison result indeed holds under certain monotonicity conditions for rate
allocations. Consider the following monotonicity condition.

Definition 6 (Monotonicity w.r.t. capacity region) We say that a rate
allocation satisfies monotonicity w.r.t. capacity region if for any state x, the
rate allocation per class for a system with a larger capacity region dominates
that with a smaller one.
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Further, recall per-job rate monotonicity defined in Section 4.2, where the rate
allocated to each job ( viz., r

i

(x)

x
i

for jobs in class i) only decreases when an
additional job is added into the system. The following lemma can be shown to
hold through a simple coupling argument across jobs for arbitrary polymatroid
capacity regions.

Lemma 5 Consider systems with arbitrary polymatroid capacity regions C and
C̃ such that C ⇢ C̃. Consider a rate allocation which satisfies monotonicity
w.r.t. capacity region as well as per-job rate monotonicity. Then, the mean de-
lay for capacity region C under arbitrary load ⇢ upper bounds that for capacity
region C̃ under the same load.

It is easy to check that ↵-fair rate allocation satisfies per-job rate mono-
tonicity as well as monotonicity w.r.t. capacity region. Thus, Lemma 5 holds
for ↵-fair rate allocation. However, one can show that Greedy rate allocation
may not satisfy either property for arbitrary polymatroid capacity regions.
This further highlights the brittleness of Greedy rate allocation to asymme-
tries. Even for Balanced fair rate allocation it is not directly clear if the lemma
holds. Thus, henceforth we will only consider ↵-fair rate allocation.

Now we are indeed ready with all the tools required to exhibit robustness
in large scale systems.

Assumption 3 (Load Heterogeneity) We consider a sequence of systems

where load ⇢(n) for each n is allowed to be within a set B(n) defined as follows:
Consider a sequence (✓n : n 2 N) such that ✓n = !(1), ✓n = o( n

logn ), and

✓n = o(cn). Also, fix a constant � < 1 independent of n. For each n:

B(n) ,
⇢

⇢ : max
i2F (n)

⇢i  ✓n and |⇢|  �⇠m

�

.

The condition |⇢|  �⇠m implies that we allow load to increase linearly with
system size. Also, since ✓n = !(1), the condition maxi ⇢i  ✓n implies that
we allow load across servers to be increasingly heterogeneous. However, the

condition ✓n = o
⇣

min( n
logn , cn)

⌘

implies that peak per-class load is limited,

i.e., it constrains the heterogeneity in load allowed in the system. Further, the
condition ✓n = o(cn) would allow us to claim stability, and to show that the
mean delay of the system tends to 0 as n increases.

The following is the main result of this section. For a proof see Section 6.2.

Theorem 6 Consider a sequence of systems with n files F (n) and m = dbne
servers S(n), where b is a constant. For each n, let the total service capacity
of servers be ⇠m, where ⇠ is independent of n. S(n) is partitioned into a finite
number of heterogeneous groups, each with ⌦(n) servers and equal per-server
capacity. Suppose cn = !(log n) copies for each file are stored across servers
at random. Let G(n) = (F (n) [ S(n); E(n)) represent the associated random
bipartite graph representing file placement across servers.

Given a realization of G(n), let jobs for each file-class i 2 F (n) arrive at
rate �i. Let �

(n) = (�i : i 2 F (n)). Let the mean service requirement of jobs
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be ⌫, where ⌫ is independent of n. Let ⇢(n) = ⌫�(n). Suppose that the jobs are
served as per ↵-fair rate allocation.

Let (✓n : n 2 N) be a sequence such that ✓n = o
⇣

min( n
logn , cn)

⌘

. Fix a

constant � < 1. Let B(n) = {⇢ : maxi ⇢i  ✓n and |⇢|  �⇠m}. Suppose that
for each n we have ⇢(n) 2 B(n). Fix a constant � > 1. Let E[D(n)|G(n)] be
the conditional expectation of delay of a typical job with respect to �-algebra
generated by G(n). Then, we have

lim
n!1

P

✓

E[D(n)|G(n)]  �
⌫

⇠cn

1

�
log

✓

1

1� �

◆◆

= 1.

6.1 Numerical Validation and Robustness of Theorem 6

The mean delay bound in Theorem 6 holds with high probability when the
system size n is large, and when the load heterogeneity ✓n is small as compared
to cn. Below, we numerically explore the impact of the system size and these
parameters on performance and our bounds. The motivation for our work is,
in part, that simulation of large systems is di�cult and it is desirable to reach
a rough understanding of how performance scales. To that end we consider
systems using randomized file placement, and assume that the capacity region
is essentially symmetric – in our scaling regime this is known to happen with
high proabability, see Theorem 5. Symmetry of the capacity region allows us
to numerically compute the mean delay, and compare exact results to our
‘asymptotic’ bounds, for large systems.

We first consider a large system with both symmetric capacity and sym-
metric load across classes. Theorem 1, along with Theorem 2, provides an
upper bound for mean delay under ↵-fair rate allocation. Further, Proposi-
tion 5 provides a lower bound for the same. Figure 3 exhibits these bounds as
a function of load per class for several systems with large n, and cn = dlog

2

ne,
and compares it with the ‘asymptotic expression for expected delay’ given in

Theorem 6 (i.e., � ⌫
⇠c

n

1

� log
⇣

1

1��

⌘

) for � = 1. As can be seen, as n increases

both bounds converge to the asymptotic expression, e.g., the relative error
of upper bound for n = 1000 and � = 0.6 is less than 10%. Recall that the
expression in Theorem 6 is an asymptotic upper bound for � > 1 (thus the
asymptotic expression shown in the figure for � = 1 is the most aggressive
bound one could hope for). Thus, n needs to be as large as 1000 or more for
the asymptotic upper bound to be meaningful at medium loads.

Next we study the impact of load heterogeneity. Recall that in our model
for constrained heterogeneity we allow the peak per-class load to be at most
✓n while maintaining the total system load to be less than or equal to �⇠m.
Thus, the ‘worst case’ load heterogeneity is when the total system load is equal
to �⇠m and there is a subset of classes which have load equal to ✓n, with the
remaining classes having a load equal to 0. An upper bound for mean delay
for a system with such a worst case load and with ↵-fair rate allocation can
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Fig. 3 Convergence of mean delay at di↵erent loads for symmetric systems as n increases.
m = n, cn = dlog2 ne, ⇠ = 1, ⌫ = 1, and � = 1. Load is symmetric across classes.
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Fig. 4 Impact of heterogeneity ✓n on mean delays. m = n, cn = dlog2 ne, ⇠ = 1, ⌫ = 1,
and � = 0.6.

again be obtained via the expression in Theorem 1, with load per class equal
to ✓n but with smaller total number of classes.

Figure 4 exhibits our mean delay upper bound obtained as above as a func-
tion of ✓n, and compares it with the asymptotic bound obtained via Theorem 6
for � = 2. For n = 10000, the asymptotic bound holds as ✓n varies from 0.6 to
up to 3.7. Note that ✓n = 0.6 corresponds to a system with homogeneous load
across classes. Thus, for a large system the asymptotic bound is good as long
as the peak per-class load ✓n is no more than six times the per-class load of
the homogeneous system.
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6.2 Proof of Theorem 6

In light of Corollary 3 we consider a symmetric capacity region which, with
high probability, contains the capacity region resulting from randomized file
placement. Further, to obtain an upper bound on the mean delay for heteroge-
neous loads, we consider a system with extremely ‘unbalanced’ arrivals in that
the arrival rate is maximum for a subset of classes and negligible for others.
The bound is obtained via the mean delay expression under Balanced fairness
for the extremely unbalanced system.

Without loss of generality, assume � < 1

� . From Corollary 3 and definitions

of C̄(n) and µ̄(n)(.), with high probability the capacity region contains the
following symmetric polymatroid:

C̃(n) ,
(

r � 0 :
X

i2A

ri  h(n)(|A|), 8A ⇢ F (n)

)

,

where

h(n)(k) , (1/�)⇠m

✓

1�
⇣

1� cn
m

⌘k
◆

8k = 0, 1, . . . , n.

Thus, from Lemma 5 and Corollary 3, the theorem follows if we show that for a
system with (deterministic) capacity region C̃(n) and with ↵-fair rate allocation

the mean delay is upper bounded by � ⌫
⇠c

n

1

� log
⇣

1

1��

⌘

for large enough n. Thus,

for the rest of the proof we will assume that the system has capacity region
C̃(n) and ↵-fair rate allocation, and eventually establish the mean delay bound.

Note that since C̃(n) is monotonic in cn, it is su�cient to assume that

cn = o( n
logn ) since, if it is not, we can set cn to be equal to

q

n
logn✓n and all

the assumptions still hold. Thus, henceforth we assume that

cn = o(
n

log n
).

Let ⇠0 , ⇠/�. Also let �0 , ��. Thus, we get

h(n)(k) = ⇠0m

✓

1�
⇣

1� cn
m

⌘k
◆

8k = 0, 1, . . . , n.

Since �⇠m < ⇠0m and ✓n = o(cn), one can check that B(n) is a subset of C̃(n)

for large enough n, and we get stability.
Now we consider a case where certain classes have maximum load (i.e., ✓n)

and the rest have load 0, while ensuring that the overall system load is still
approximately �m.

Let tn ,
l

�0⇠0m
✓
n

m

. Let A(n) be an arbitrary subset of F (n) such that |A(n)| =

tn. Let ⇢̂(n) = (⇢̂(n)i : i 2 F (n)) where ⇢̂(n)i = ✓n if i 2 A(n) and 0 otherwise.
Then, it is easy to show that for each n, we have

B(n) ⇢
n

⇢ : ⇢ �w ⇢̂(n)
o

.
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Thus, from Theorem 4, it is su�cient to show that the bound on mean
delay holds for balanced fair rate allocation under load ⇢(n) = ⇢̂(n).

Henceforth, we assume BF rate allocation and let load ⇢(n) = ⇢̂(n). For
each n, we invoke Proposition 4 and Theorem 1 with ⇢ replaced by ✓n and n

replaced by tn, to obtain an expression for ⇡(n)
k and �(n)

k , and eventually mean

delay. We first show below a concentration ⇡(n)
k using Proposition 4.

Below, we refrain from using ceil and floor to avoid cluttering.

Theorem 7 Consider a system with capacity region C̃(n) and with the load

vector ⇢̂(n). Under balanced fair rate allocation, ⇡(n)
k which represents the sta-

tionary probability that k classes are active in the system satisfies the following
concentration result. For any positive constants ✏ > 1 and ✏0 < 1 independent
of n, there exists a constant �̃ < 1 such that for large enough n we have

✏b log( 1
1��

0 )
n

c

n

X

k=✏0b log( 1
1��

0 )
n

c

n

⇡(n)
k � 1� �̃

m

c

n . (15)

Proof From Proposition 4 for k = 1, . . . , tn we have

⇡(n)
k =

(tn � k + 1)✓n
h(n)(k)� k✓n

⇡(n)
k�1

, (16)

Fix a constant �
11

independent of n such that 0 < �
11

< 1. Let

k(n)# =
m

cn
log

✓

1

1� �0�
11

◆

.

Then, one can check that h(n)(k#)  �0�
11

⇠0m. In fact, we have h(n)(k) 
�0�

11

⇠0m, 8k  k(n)# . Using (16), for each k  k(n)# , we have

⇡(n)
k � (tn � k + 1)✓n

�0�
11

⇠0m� k✓n
⇡(n)
k�1

�
tn✓n � (k(n)# � 1)✓n

�0�
11

⇠0m
⇡(n)
k�1

=
�0⇠0m� o(n)

�0�
11

⇠0m
⇡(n)
k�1

� 1

�
12

⇡(n)
k�1

,

for a positive constant �
12

such that �
11

< �
12

< 1, and large enough n.

Equivalently, ⇡(n)
k  �

12

⇡(n)
k+1

8k < k(n)# . Fix a positive constant ✏
1

< 1. Then,

for all k < ✏
1

k(n)# , we have

⇡(n)
k  �

(1�✏1)k
(n)
#

12

⇡(n)

k
(n)
#

.

Now, fix a constant �
13

independent of n such that �0 < �
13

< 1 and let

k(n)" =
m

cn
log

✓

1

1� �0/�
13

◆

.
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The, one can check that
h(n)

(k
(n)
" )

⇠0m ! �0/�
13

as n ! 1. Thus, for some constant

�0
13

such that �
13

< �0
13

< 1, we have h(n)(k(n)" ) � �0⇠0m/�0
13

. In fact, for all

k � k(n)" , we have h(n)(k) � �0⇠0m/�0
13

. Now, for large enough n, �0⇠0m/�0
13

�
�0⇠0m + ✓n � (tn + 1)✓n. Thus, for large enough n, we have h(n)(k) � k✓n �
(tn � k + 1)✓n 8k � k(n)" , or equivalently from (16),

⇡(n)
k  ⇡(n)

k�1

8k � k(n)" . (17)

In fact, for a fixed positive constant ✏
2

> 1, for all k such that k(n)"  k  ✏
2

k(n)"
we have

⇡(n)
k  (tn � k + 1)✓n

�0⇠0m/�0
13

� k✓n
⇡(n)
k�1

 tn✓n

�0⇠0m/�0
13

� ✏
2

k(n)" ✓n
⇡(n)
k�1

 �0⇠0m

�0⇠0m/�0
13

� o(n)
⇡(n)
k�1

 �
14

⇡(n)
k�1

,

for a positive constant �
14

such that �0
13

< �
14

< 1, and for large enough n.

Thus, ⇡(n)

✏2k
(n)
"

 �
(✏2�1)k

(n)
"

14

⇡(n)

k
(n)
"

for large enough n. Further, using (17) we get

⇡(n)
k  �

(✏2�1)k
(n)
"

14

⇡(n)

k
(n)
"

8k > ✏
2

k(n)"

Thus, we get

1 =
t
n

X

k=0

⇡(n)
k =

✏1k
(n)
# �1

X

k=0

⇡k +

✏2k
(n)
"
X

k=✏1k
(n)
#

⇡(n)
k +

t
n

X

✏2k
(n)
" +1

⇡(n)
k

 (✏
1

k(n)# )�
(1�✏1)k

(n)
#

12

+

✏2k
(n)
"
X

k=✏1k
(n)
#

⇡(n)
k +

⇣

tn � ✏
2

k(n)"

⌘

�
(✏2�1)k

(n)
"

14

 n�
(1�✏1)k

(n)
#

12

+ n�
(✏2�1)k

(n)
"

14

+

✏2k
(n)
"
X

k=✏1k
(n)
#

⇡(n)
k

= �
�15

m

c

n

�log

�12
n

12

+ �
�17

m

c

n

�log

�14
n

14

+

✏2k
(n)
"
X

k=✏1k
(n)
#

⇡(n)
k ,

for suitably chosen positive constants �
15

, and �
17

. Thus, the concentration
follows by noting that ✏

1

, ✏
2

, �
11

, and �
13

can be chosen arbitrarily close to
1. ut
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We now provide a bound for �(n)
k . From (9), for k = 1, . . . , tn, we have

�(n)
k =

k
X

l=1

h(n)(l)

h(n)(l)� l✓n
=

k
X

l=1

1

1� l✓
n

h(n)
(l)

. (18)

Using gn = ✓
n

�0⇠0b in Lemma 3, we get h(n)(k) = ⇠0bnp(n)k � �18
�0 k✓n for large

enough n and some constant �
18

such that �0 < �
18

< 1. From (18), for each
k = 1, . . . , tn, for large enough n we have

�(n)
k  �

19

k

for some constant �
19

which is greater than 1.

The above bound for �(n)
k is somewhat loose, especially for lower values

of k. Recall, the concentration result, namely Theorem 7, implies that the
number of active classes is smaller than ✏b log( 1

1��0 )
n
c
n

with high probability.

The bound on �(n)
k can be further improved for the smaller values of k as

follows.
Suppose h(n)(.) is a continuous function, i.e., h(n)(t) = ⇠0m

⇣

1� e�
tc

n

m

⌘

for each t 2 R+. Then, by concavity of h(n)(t) and noting that h(n)(0) = 0, we

get h(n)
(t)

t � d
dth

(n)(t). Further, by concavity, for each k  ✏b log( 1

1��0 )
n
c
n

, we

have h(n)
(k)

k � d
dth

(n)(t)
�

�

�

t=k
� d

dth
(n)(t)

�

�

�

t=b log( 1
1��

0 )
n

c

n

= ⇠0cn(1� �0)�✏.

From (18), for k = 1, . . . , ✏b log( 1

1��0 )
n
c
n

, we have

�(n)
k 

k
X

l=1

1

1� ✓
n

⇠0c
n

(1��0
)

�✏

= k
1

1� o(1)
.

We are now ready to bound mean delay. For large enough n, we have

tn✓n
⌫

E[D(n)] =
t
n

X

k=1

�(n)
k ⇡(n)

k =

✏b log( 1
1��

0 )
n

c

n

X

k=1

�(n)
k ⇡(n)

k +
t
n

X

k=✏0b log( 1
1��

0 )
n

c

n

+1

�(n)
k ⇡(n)

k


✏b log( 1

1��

0 )
n

c

n

X

k=1

k
1

1� o(1)
⇡(n)
k +

t
n

X

k=✏0b log( 1
1��

0 )
n

c

n

+1

�
19

k⇡(n)
k

 ✏b log

✓

1

1� �0

◆

n

cn

1

1� o(1)
+ �

19

tn�̃
m

c

n

The theorem thus follows from definition of tn, �0 and ⇠0, and the fact that
✏, �, and �̃ where chosen arbitrarily. ut
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7 Conclusions

Our main conclusions address both practical and theoretical aspects associ-
ated with such systems. We show that an infrastructure which allows a user to
download in parallel from a pool of servers can achieve scalable performance
under limited heterogeneity in file demands. Some elements of content delivery
infrastructure such as a centralized back end which handles cache misses at dis-
tributed sites may see less pronounced heterogeneity in demands. Our results
suggest that pooling of server resources is a scalable approach towards deliv-
ering content for such centralized systems without requiring complex caching
strategies internally.

On the theoretical side we have established: (1) basic new results linking
fairness in resource allocation to delays and (2) the asymptotic symmetry
of randomly configured large-scale systems with heterogenous components.
Together these results suggest large systems might eventually be robust to
heterogeneity and fairness criterion.

8 Appendix

8.1 Relative greediness and other rate allocation properties

Below, we provide a proof of Lemma 1 which asserts that ↵F is more greedy
than BF. Along the way, we develop several other properties of the rate allo-
cation policies.

Proof of Lemma 1 stems from the Properties (1) and (2) below on per-job
rate assignment for ↵F and BF.

1.) ↵F gives the most balanced per-job rate allocation: This property fol-
lows from the fact that ↵F is equivalent to max-min fair rate allocation, see
Proposition 2. Formally,

Lemma 6 Let b↵ represent a vector of rates assigned to a set of flows under
↵F rate allocation. Let b̃ be the rates assigned to the same set of flows under
any other feasible rate allocation. Then, b↵ �w b̃, i.e., weak majorized from
above.

Proof Let the set of flows be qA
x

. It is easy to show that b↵ is the unique
solution to the following optimization problem:

maximize sign(1� ↵)
X

u2q
A

x

b̂1�↵
u

subject to
X

u2q
A

b̂u  µ(A), 8A ⇢ A
x

b̂u � 0, 8u 2 qF

Also, since b̃ is feasible, it satisfies the constraints of the above problem. The
result then follows by noting that the objective function of the above problem
is monotonic and Schur-Concave in (b̂u : u 2 qA

x

) [12, 15]. ut
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2.) In ↵F and BF, longest queues have smallest per-job rates: For ↵F, this
property again follows from the fact that it is equivalent to max-min fair, and
that the capacity region is convex and symmetric. For BF, the proof is given
in Appendix 8.2. Formally,

Lemma 7 ↵F and BF rate allocations satisfy the following property for any

state x: if xi > xj then r
i

(x)

x
i

 r
j

(x)

x
j

.

Proof Below, we prove the lemma for ↵F rate allocation. For a proof of this
lemma for BF rate allocation, see Section 8.2.

Let b↵ = (b↵u : u 2 qA
x

) represent the rates assigned to ongoing flows under

↵F rate allocation in state x. Suppose xi > xj , but
r↵
i

(x)

x
i

>
r↵
j

(x)

x
j

. Then, then

for each u0 2 qi and v0 2 qj , we have b↵u0 > b↵v0 . Let b̃ = (b̃u : u 2 qA
x

) where

b̃u = b↵u for each u 2 qA
x

\{i,j} and b̃u =
r↵
i

(x)+r↵
j

(x)

x
i

+x
j

for each u 2 q{i,j}. It can

be checked that b̃u is feasible and that b̃ �w b↵. This contradicts Lemma 6.
Hence the result. ut

Now, let us study what the above properties imply for per-class rate alloca-
tion. Consider a state x. Lemma 7 above implies that the most disadvantaged
jobs are the ones which belong to longest queues for both, BF and ↵F. This,
along with Lemma 7, implies that ↵F provides larger rate to longest queues.
Thus we get the following property.

3.) ↵F provides larger rate to longest queues compared to BF: Formally, this
property can be stated as follows:

Lemma 8 For any state x, we have
Pk

l=1

r↵
(l)(x) �

Pk
l=1

rB
(l)(x) for each

k 2 {1, 2, . . . , n}.

Proof Let u
1

, u
2

, . . . , ux[1]
be the flows in the class corresponding to x

[1]

. Sim-
ilarly, for each k 2 {2, . . . , n}, let uP

k�1
l=1 x[l]+1

, . . . , uP

k

l=1 x[l]
be the flows in

the class corresponding to x
[k]. From Lemma 7, under both BF and ↵F rate

allocation we have bu1  bu2  . . .  bu|x| . Thus, it is enough to show that

b↵ �w bB . However, this follows from Lemma 6. ut
Now, we focus on ↵F and study how it allocates rates across classes for

states x and y such that x � y. Intuitively, jobs in longer queues in state y are
more constrained than those in x. Again using the fact that ↵F is equivalent
to max-min fair, the most constrained jobs in state y have smaller rate than
those in state x. By monotonicity of ↵F, this holds even when x �w y. When
translated to per-class rate allocation in states x and y, this argument leads
us to the following property:

4.) ↵F provides larger rate to longer queues in more balanced states: For-
mally, this property can be stated as follows:

Lemma 9 Consider states x and y such that x �w y. For each k such that
Pk

l=1

x
[l] =

Pk
l=1

y
[l], we have

Pk
l=1

r↵
(l)(x) �

Pk
l=1

r↵
(l)(y).

Proof Due to monotonicity of r↵(y) with respect to components of y, it is
enough to show the result for the case where x � y. Assume, x � y. Let
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u
1

, u
2

, . . . , ux[1]
be the flows in the class corresponding to x

[1]

. Similarly, let
uP

k�1
l=1 x[l]+1

, . . . , uP

k

l=1 x[l]
be the flows in the class corresponding to x

[k] for

each k 2 {2, . . . , n}. Let the corresponding rates assigned to flows under ↵F
rate allocation be given by b(x). Using Lemma 7, we have bu1  bu2  . . . 
bu|x| . Similarly, let v

1

, v
2

, . . . , v|y| be the flows corresponding to state y and

construct the corresponding b(y).

One can check that b̃(x) = (b̃(x)u
k

: k 2 {1, 2, . . . , |x|), where b̃(x)u
k

= b(y)v
k

for
each k  |x|, is feasible under state x as well. Thus, from Lemma 6, we have
b(x) �w b̃(x). From this, the result follows. ut

Finally, we are ready to study relative greediness of ↵F and BF.
5.) ↵F is more greedy than BF: We now prove Lemma 1. Consider states x

and y such that x �w y. From Lemma 9 we have
Pk

l=1

r↵
(l)(x) �

Pk
l=1

r↵
(l)(y),

and from Lemma 8 we have
Pk

l=1

r↵
(l)(y) �

Pk
l=1

rB
(l)(y). Hence, Lemma 1

holds.

8.2 In BF, longest queues have smallest per-job rates

Lemma 10 For any state x, if xi > xj then
rB
i

(x)

x
i

 rB
j

(x)

x
j

.

Proof Using definition of balanced fairness, we have rB
i

(x)

rB
j

(x)

= �(x�e

i

)

�(x�e

j

)

. Thus, we

need to show that �(x�e

i

)

�(x�e

j

)

 x
i

x
j

. It is thus su�cient to prove that �(x+e

i

)

�(x+e

j

)

�
x
j

+1

x
i

+1

holds for each x since the result follows when x is replaced with x�ei�ej .

We show below that �(x+e

i

)

�(x+e

j

)

� x
j

+1

x
i

+1

holds for each x.

Fix i, j 2 F . By symmetry of balanced fairness and the capacity region,
the result holds for each x such that xi = xj . We show that the result holds
for each x such that xi � xj using induction on |x|. We will use the following
recursive expression for �(.) which we get from definition of balanced fair and
Proposition 3: For each state x we have,

�(x) =

P

i02A
x

�(x� ei0)

µ(A
x

)
. (19)

The result clearly holds for the base case of |x| = 0. Assume that the result
holds for all states x0 such that |x0| < |x|. We prove that the result holds for
the state x under each of the following two possible cases for x:
Case 1 A

x+e

i

( A
x+e

j

: This case is possible only if xi > 0 and xj = 0. Thus,
µ(A

x+e

i

)  µ(A
x+e

j

). Using (19), we get

�(x+ ei)

�(x+ ej)
�

�(x) +
P

i02A
x

\{i} �(x+ ei � ei0)

�(x) + �(x+ ej � ei) +
P

i02A
x

\{i} �(x+ ej � ei0)
.

Using induction hypothesis, we have �(x+e

i

�e

i

0 )
�(x+e

j

�e

i

0 )
� x

j

+1

x
i

+1

for each i0 2 A
x

\{i}.
Thus, using the fact that a1+a2

b1+b2
� x

y if a
k

b
k

� x
y for each k 2 {1, 2}, the result
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follows if we show that �(x)

�(x)+�(x+e

j

�e

i

)

� x
j

+1

x
i

+1

. This in turn follows since

xj = 0 and �(x)

�(x+e

j

�e

i

)

� 1

x
i

holds by induction hypothesis.

Case 2 A
x+e

i

= A
x+e

j

: Again using (19), we get

�(x+ ei)

�(x+ ej)
=

�(x) + �(x+ ei � ej) +
P

i02A
x

\{i,j} �(x+ ei � ei0)

�(x) + �(x+ ej � ei) +
P

i02A
x

\{i,j} �(x+ ej � ei0)
.

Again, using induction hypothesis we �(x+e

i

�e

i

0 )
�(x+e

j

�e

i

0 )
� x

j

+1

x
i

+1

for each i0 2
A

x

\{i, j}. Thus, we only need to show that �(x)+�(x+e

i

�e

j

)

�(x)+�(x+e

j

�e

i

)

� x
j

+1

x
i

+1

. We show

this below.
By induction hypothesis, we have �(x+e

i

�e

j

)

�(x)

� x
j

x
i

+1

and �(x)

�(x+e

j

�e

i

)

�
x
j

+1

x
i

. Thus, we get

�(x) + �(x+ ei � ej)

�(x) + �(x+ ej � ei)
=

1 + �(x+e

i

�e

j

)

�(x)

1 + �(x+e

j

�e

i

)

�(x)

�
1 + x

j

x
i

+1

1 + x
j

+1

x
i

=
xj + 1

xi + 1
.

Hence, the result. ut

8.3 Technical Lemmas for proof of Theorem 5

Lemma 3. Let a sequence (gn : n 2 N) be such that gn = o(cn). Let �1 < 1 be
a positive constant independent of k and n. Then, for large enough n, we have

p(n)k � �
1

gn
n

k 8k 2
⇢

0, 1, . . . ,

�

n

gn

⌫�

.

Proof Consider a sequence of functions
�

f (n)(.)
�

n�1

where for each n, f (n)(t) =

1� (1� cn/(bn))t for each t 2 R
+

. Then,

f (n) (n/gn) = 1� (1� cn/(bn))
n

g

n

n!1�! 1.

Thus, there exists an integer n0 such that f (n) (n/gn) � �
1

for all n � n0.
Also, f (n)(0) = 0 for each n. Using concavity of f (n)(.), for each n � n0 we
have

f (n) (t) � f (n) (n/gn)

(n/gn)
t, 8t s.t. 0  t  n/gn.

Hence, the lemma. ut
Lemma 4. There exists a positive constant �, independent of k and n, such

that H
⇣

p(n)k (1� ✏)||p(n)k

⌘

� �� + ✏kcnm .

Proof From definition,

H
⇣

p(n)k (1� ✏)||p(n)k

⌘

= p(n)k (1�✏) log(1�✏)+(1�p(n)k (1�✏)) log

 

1� p(n)k (1� ✏)

1� p(n)k

!
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Here, the term p(n)k (1�✏) log(1�✏), while negative, is greater than (1�✏) log(1�
✏), a constant. Similarly, the term (1 � p(n)k (1 � ✏)) log

⇣

1� p(n)k (1� ✏)
⌘

is

negative, but can be upper-bounded by a constant as follows:

(1�p(n)k (1�✏)) log
⇣

1� p(n)k (1� ✏)
⌘

� log
⇣

1� p(n)k (1� ✏)
⌘

� log(1�(1�✏))

= log ✏

Thus, we have

H
⇣

p(n)k (1� ✏)||p(n)k

⌘

� �� + (1� p(n)k (1� ✏)) log

 

1

1� p(n)k

!

� ��+(1� (1� ✏)) log

 

1

1� p(n)k

!

= ��+ ✏ log

 

1

1� p(n)k

!

� ��+ ✏
kcn
m

,

where in the last inequality we used the fact that 1� p(n)k  e�
kc

n

m . ut
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