
Network Flows for Functions

Virag Shah Bikash Kumar Dey D. Manjunath

Abstract—We consider in-network computation of an arbitrary
function over an arbitrary communication network. A network
with capacity constraints on the links is given. Some nodes in the
network generate data, e.g., sensor nodes in a sensor network.
An arbitrary function of this distributed data is to be obtained
at a terminal node. The structure of the function is described
by a given computation schema, which in turn is represented by
a directed tree. We define a new notion of conservation of flow
suitable in this setup and design computing and communicating
schemes to obtain the function at the terminal at the maximum
rate. For this, we formulate linear programs to determine
network flows that maximize the computation rate. Our approach
introduces the network flow techniques to the distributed function
computation setup where such a scope was hitherto unsuspected
due to the lack of traditional conservation of flow.

I. INTRODUCTION

Motivated by sensor network applications, there has been

significant interest in computing functions of distributed data

inside the network. The interest of the network is to obtain a

function, say Θ, of the source symbols at a terminal node.

The nodes in the network can perform computation and

thereby participate in the computation of Θ. In this setting,

we assume that the variables form a time sequence and that

they can be generated at any rate; equivalently, an infinite

sequence is readily available. Thus, it is desired to compute

Θ at the maximum possible rate. In this paper we introduce

novel network flow techniques to design a computation and

communication scheme that maximizes the rate at which Θ
is computed. Though network flow techniques have been

used widely to study multiple unicast [1], [2] problems, also

known as multi-commodity problems, our work develops such

techniques for the first time for function computation.

A major body of work on in-network computation exists on

the asymptotic analysis of the number of transmissions needed

to compute specific functions in noisy broadcast networks

(e.g., [3] and follow-up works by various authors,) and more

recently, in networks represented by random geometric graph

models, e.g., [4], [5]. Another class of work, in information

theory, considers simplistic fixed networks with small number

of correlated sources, e.g. [6], [7]. There has been some

recent work in the network coding literature on distributed

function computation over larger and more complex networks

with independent sources. However, designing optimal coding

schemes and finding capacity is a difficult problem except for

very special functions or networks [8], [9].

In this paper we make a significant departure from all the

above in the problem setup as well as in the techniques used.

V. Shah is with ECE Dept., Univ. of Texas at Austin. B. K. Dey and D. Man-
junath are with EE Deptt., IIT Bombay. Research supported by a project from
DST, Govt. of India and done at Bharti Centre for Communication in IIT
Bombay. Emails: virag4u@gmail.com,{bikash,dmanju}@ee.iitb.ac.in

We consider arbitrary functions of the distributed data, and

an arbitrary network with directed or undirected edges with

capacity constraints. To illustrate the essence of our setup,

consider the function Θ(X1, X2, X3) = X1X2 +X3 of three

variables generated at three sources s1, s2, and s3 respectively.

A terminal node t needs to obtain Θ(X1, X2, X3). We assume

that all the three data symbols are from the same alphabet

A. The computation of the function can be broken into two

parts—first computing X1X2, and then adding X3. These two

operations can be done at different nodes in the network in

the above order. Such a sequence of operations to compute the

function is called a computation schema, and is represented by

a computation tree as shown in Fig. 1(b) for the above Θ.

Now consider computing Θ(X1, X2, X3) in the network

shown in Fig. 1(a) where each edge has unit capacity. Two

such ways of computing this function are shown in Figs. 1(c)

and 1(d). These are called ‘embeddings’, defined formally in

Sec. II. Our aim is to find the best time-sharing between

these various embeddings to achieve the maximum number

of computations per use of the network.

A given function may allow computation using different

computation trees. To find the optimum solution, one has to

find the best timesharing between all the embeddings of all

such computation trees in the given network. For most of this

paper, we consider a single given computation tree to illustrate

our techniques. We then extend our techniques (in Sec. III-B)

for the cases when multiple computation trees are given for

the function. We note that the ‘star’ tree is a computation tree

for any function, and it corresponds to communicating all the

data symbols to a single node for computation of the function

and subsequently forwarding to the terminal node. Note that

computation of a function even on an isolated computer needs

a sequence of operations, and the knowledge of one or more

computations trees is a basic and natural requirement. For any

given set of computation trees for a function, our approach

gives the optimum computation-rate under the use of the

corresponding computation-sequences. We do not address the

question of how to find computation trees for Θ in this paper.

Organization and contribution: We describe the model in

Sec. II. Section III presents the main contributions of this

paper. We formulate a linear program, Embedding-Edge-LP,

that defines the problem of optimally allocating flows on the

embeddings to achieve the maximum computation rate. We

then introduce a notion of flow conservation, and present an

LP, Node-Arc-LP,, that can be solved in polynomial time.

We then present an efficient algorithm, Algorithm 1, that

converts the edge-flows obtained from Node-Arc-LP into a

flow allocation on the embeddings.

In an extended version of the paper [12], we also develop

t

s1 s2 s3

(a)

X1 X2
X3

Θ

*

+

X1X2

(b)

X2

s1 s2 s3

t

X1

X3

X3

Θ

X2

X1

(c)

X1*X2

s1 s2 s3

t

X1 X2

X1*X2

X3

X3

(d)

Fig. 1. Computing Θ = X1X2 +X3 over a network. (a) A network to compute Θ = X1X2 +X3. (b) A schema represented by a computation tree for
computing Θ (c) A possible embedding that computes at Θ at unit rate. (d) An alternative embedding.

a primal-dual algorithm that is faster than a solution via

Node-Arc-LP and Algorithm 1, and obtains an approximately

optimal (within (1− ǫ) fraction) solution. As a subroutine for

this algorithm, we develop an efficient algorithm for finding

a minimum-weight embedding in a network with weighted

links, which is of independent interest. We also show that our

techniques can be extended to interesting practical scenarios

of multiple terminals wanting different functions, computation

with a given desired precision, and to networks with energy

constraints at nodes.

II. THE MODEL AND THE NOTATION

The communication network is an undirected, simple, con-

nected graph N = (V,E) where V is a set of n nodes and E

is a set of m undirected edges. Each edge uv ∈ E represents

a half duplex link with a total non-negative capacity c(uv).
In the network, S = {s1, s2, . . . , sκ} ⊂ V is the set of κ

source nodes. Source si has an infinite sequence of data values

{Xi(k)}k≥0 where Xi(k) belongs to a finite alphabet A. Xi

is used to denote a representative element of the sequence. Let

X
△
= [X1, . . . Xκ]. The link capacities are expressed in |A|-ary

unit. Without loss of generality, we assume that each source

node in the network generates exactly one data sequence. We

also assume that there is only one terminal node.

A given function Θ : Aκ → A of X needs to be obtained at

the terminal node t for each k at the best possible rate. A com-

putation schema for Θ is given and represented by a directed

tree G = (Ω,Γ) where Ω is the set of nodes and Γ is the set of

edges. The elements of Ω are labeled µ1, µ2, . . . , µ|Ω| where

µ1, µ2, . . . , µκ are the source nodes, µ|Ω| is the terminal node

that obtains Θ and the rest are computing nodes that compute

different functions of X. Further, the nodes in Ω are labeled

according to a topological order such that for i > j there is no

directed path in G from µi to µj . The source nodes have in-

degree zero and out-degree one and the terminal node has in-

degree one and out-degree zero. All other nodes have in-degree

greater than one and out-degree exactly one. Similarly, the

elements of Γ are labeled θ1, θ2, . . . , θ|Γ| with θ1, θ2, . . . , θκ
being the outgoing edges from µ1, µ2, . . . , µκ respectively, and

θ|Γ| being the incoming edge into µ|Ω|. The remaining edges

are labeled according to a topological order, i.e., for any i < j,

there is no path from the head node of j to the tail node of i.

For any edge θ ∈ Γ, let tail(θ) and head(θ) represent,

respectively, the tail and the head nodes of the edge θ. Let

Φ↑(θ) and Φ↓(θ) denote, respectively, the predecessors and

the successors of θ, i.e., Φ↑(θ)
△
= {η ∈ Γ|head(η) =

tail(θ)} and Φ↓(θ)
△
= {η ∈ Γ|tail(η) = head(θ)}. We

assume that each edge θ of G represents a distinct function

of X that can be computed from the functions corresponding

to the edges in Φ↑(θ). Further, each function takes values from

the same alphabet A. (We remark that this is not unreasonable

even when all the computations are over real numbers because

computations are performed using a fixed precision.)

Let N(v)
△
= {u ∈ V |uv ∈ E} denote the set of neighbors

of a node v ∈ V and N ′(v) = N(v) ∪ {v}. A sequence of

nodes v1, v2, · · · , vl, l ≥ 1, is called a path if vivi+1 ∈ E

for i = 1, 2, . . . , l − 1. The set of all paths in N is denoted

by P . With abuse of notation, for such a path P , we will say

vi ∈ P and also vivi+1 ∈ P . The nodes v1 and vl are called

respectively the start node and the end node of P , and are

denoted as start(P) and end(P).
As discussed in Sec. I, a function with a given computation

tree can be computed along any “embedding” of the tree in

the network as shown in Fig. 1. We are now ready to formally

define an embedding of a computation tree.

Definition: An embedding is a mapping B : Γ → P such

that

1) start(B(θl)) = sl for l = 1, 2, . . . , κ
2) end(B(η)) = start(B(θ)) if η ∈ Φ↑(θ)
3) end(B(θ|Γ|)) = t.

We denote the set of embeddings of G in N by B. Our aim

is to determine the flow on each of these embeddings so as

to maximize the total flow. An edge in the network may carry

different functions of the source data in an embedding. We

thus define the number of times an edge e ∈ E is used in an

embedding B as rB(e) = |{θ ∈ Γ|e is a part of B(θ)}|. An

edge may also be used to carry flows on different embeddings.

Therefore in an assignment of flows on different embeddings,

i.e., in a particular timesharing scheme, the edge may carry

multiple types of data (i.e., different functions of X) of dif-

ferent amounts. Also note that, if start(B(θi)) = end(B(θi)),
i.e., if B(θi) consists of a single node, then in that embedding

the data θi is generated as well as used (i.e., not forwarded to

another node) in that node.

III. LINEAR PROGRAMS AND ALGORITHMS

In this section, we present our main contributions. We first

give a basic linear program, the Embedding-Edge LP, which

characterizes our problem.

As discussed in Sec. I and Sec. II, the function for a

particular sample of the data can be computed over the network

using any embedding of the computation tree in the network.

For any embedding B ∈ B, let x(B) denote the average

number of function symbols computed using the embedding

B per use of the network. We present below a linear program

to maximize λ :=
∑

B∈B x(B). Recall that rB(e) represents

the number of times the edge e is used in the embedding B.

Embedding-Edge LP: Maximize λ=
∑

B∈B x(B) subject to

1. Capacity constraints:
∑

B∈B

rB(e)x(B) ≤ c(e), ∀e ∈ E (1)

2. Non-negativity constraints:

x(B) ≥ 0, ∀B (2)

This LP finds an optimal fractional packing of the embed-

dings of G into N .

In multi-commodity flow problems, a solution of the so

called Path-edge LP readily gives a way of achieving the

corresponding rates. However, since in our problem, the data

is to be mixed according to different embeddings for different

realizations of data, one needs to carefully devise a protocol

to schedule the computation and communication at the nodes

and edges in such a way that data from different realizations

are not mixed. Such a protocol is presented in [12].

A. The Node-Arc LP

Note that the cardinality of B can be exponential in |V |.
Hence the complexity of Embedding-Edge LP is exponential

in the network parameters if some structure of the problem

is not used. In the multi-commodity flow literature, another

LP formulation, called the Node-Arc LP, based on the flow

conservation principle is well-known and can be solved in

polynomial time. In the following, we point out a flow

conservation that holds in our setup and present an LP for

our problem based on this.

We assume that each node in the network has a virtual

self-loop of infinite capacity. The data flowing in the self-

loop represents the data generated at that node. This may be

the source data generated at the sources or the intermediate

or final values computed at the node. For example, if a

node computes X1X2 from X1 and X2 it receives, and then

computes X1X2 + X3 by using the computed X1X2 and

received X3, then both X1X2 and X1X2+X3 will be assumed

to flow in its self-loop. Example of the flows on the edges and

the self-loops corresponding to a particular flow assignment on

two embeddings is shown in Fig. 2.

The variables in our Node-Arc LP are
{

fθ
uv, f

θ
vu|uv ∈ E, θ ∈ Γ

}

∪
{

fθ
uu|u ∈ V, θ ∈ Γ

}

∪ {λ}.

f X1=1.5 f =1.5X2

=1f X1X2+X3

X1X2+X3f =0.5

S 2S 1

=1.5X3f

S 3

f =1.5X2f X1=1 =1.5X3f

f X1X2=0.5

f X1X2=0.5

f X3=1

f X1X2=0.5f X1=1

f X1=0.5

f X3=0.5

f X2=1

X1X2+X3

f X1X2
=1
=1f }

Fig. 2. The aggregate edge-flow values for a flow of 0.5 on the embedding
in Fig. 1(d) and a flow of 1 on the embedding in Fig. 1(c).

where, fθ
uv represents the flow of type θ ∈ Γ flowing through

the edge uv ∈ E from u to v, fθ
uu denotes the flow of type

θ flowing in the self-loop at u and λ represents the total rate

of the function computation.

Node-Arc LP consists of capacity constraints on the edges

of N , a flow-conservation rule on the nodes of N , and non-

negativity constraints on the flows fθ
uv . The flow conservation

rule is based on the fact that an intermediate node in N can,

apart from forwarding the flows it receives, generate a flow

of type θ on its self-loop by terminating the same amount of

incoming flows of type η ∈ Φ↑(θ). Each source node sl, in

addition, generates λ amount of flow of type θl. Similarly, the

terminal node t terminates λ amount of flow of type θ|Γ|. The

Node-Arc LP is as follows. Recall that N ′(v) denotes the set

of the neighbors of v and itself.

Node-Arc LP: Maximize λ subject to following constraints

for each node v ∈ V .

1. Functional conservation of flows:

fη
vv +

∑

u∈N(v)

fθ
vu −

∑

u∈N ′(v)

fθ
uv = 0,

∀θ ∈ Γ \ {θ|Γ|} and ∀η ∈ Φ↓(θ). (3)

2. Conservation and termination of θ|Γ|:

∑

u∈N(v)

f
θ|Γ|
vu −

∑

u∈N ′(v)

f
θ|Γ|
uv =

{

−λ v = t

0. otherwise
(4)

3. Generation of θl ∀l ∈ {1, 2, . . . , κ}:

fθl
vv =

{

λ v = sl

0. otherwise
(5)

4. Capacity constraints (undirected duplex links):
∑

θ∈Γ

(

fθ
uv + fθ

vu

)

≤ c(uv), ∀uv ∈ E. (6)

5. Non-negativity constraints:

fθ
uv ≥ 0, ∀uv ∈ E and ∀θ ∈ Γ (7)

fθ
uu ≥ 0, ∀u ∈ V and ∀θ ∈ Γ. (8)

Complexity: This LP has O(κm) number of variables,

O(κm) number of non-negativity constraints (one for each

variable), and O(κn+m) number of other constraints. Hence

it can be solved in polynomial time.

The above LP gives a set of flow values on each link.

Note that, unlike multi-commodity flow problem, the solu-

tion to Node-Arc LP does not readily describe a practical

communication and computation protocol over the network.

In multicommodity flow problem, if a node forwards fractions

of an incoming flow to two different links, it can do so by

arbitrarily choosing which data goes to which link. However,

in function computation setup, a node cannot do this arbi-

trarily, only data of the same realization can be mixed at

network nodes as per the computation schema. We present

an algorithm, Algorithm 1, which, from any feasible solution

of this LP, obtains a corresponding feasible solution for the

Embedding-Edge LP that achieves the same λ.

Algorithm 1: In each iteration of the while loop (lines 2-33)

we find an embedding with a non-zero flow and remove the

corresponding edge-flows to obtain another feasible solution

with a reduced rate. For this, we start by finding a mapping

of θ|Γ|, viz. B(θ|Γ|). Its last node is t. If f
θ|Γ|

tt > 0, then

we assign B(θ|Γ|) = t. Else, we seek an edge vt that carries

positive flow of type fθ|Γ| . We continue this search backwards

till we find a node u for which f
θ|Γ|
uu > 0, and assign the

explored path u · · · t to B(θ|Γ|). We now repeat (for loop in

line 6) this process for all θ ∈ Φ↑(θ|Γ|) to find B(θ) ending at

u. When the search for B(θi), ∀θi ∈ Γ is completed, we have

successfully found an embedding carrying a positive flow. z′

and z(.) keep track of the maximum flow the embedding can

carry, which is equal to the minimum of the flows in the edges

of the embedding. While exploring nodes to find B(θi), the

If block starting in line 10 checks for presence of a redundant

cycle of flow of type θi. If such a cycle is found, it is removed

from the explored path and the redundant flow is removed from

the cycle.

Proof of correctness of Algorithm 1: The proof of the

following statements ensures the correctness of the algorithm.

1) In line 9, such a u exists.

2) If a cycle of redundant flow is found and removed in

lines 10-15, then the remaining flows still satisfy the

constraints in the LP with total flow (λ) reduced by y.

3) At the end of each iteration of the while loop (lines 2-

33), the remaining flows still satisfy the constraints in

the LP with λ replaced by λ− λ′.

4) The algorithm terminates in finite time.

We now outline a proof of each of these statements. We

prove the statements 1)–4) for each iteration of the loops while

assuming that all the above claims are true in all the previous

iterations of the while and for loops.

Proof of 1: The current values of the flows satisfy all the

constraints in the Node-Arc LP with λ replaced by λ − λ′.

The algorithm ensures that in this step, the total outgoing flow
∑

u∈N(v) f
θ
vu ≥ z(v) > 0. So, by constraints (3) and (4), the

total of incoming and generated flows
∑

u∈N ′(v) f
θ
uv > 0.

Algorithm 1: Finding equivalent solution of the

Embedding-Edge LP from a feasible solution of the Node-

Arc LP.

input : Network graph N = (V,E), capacities c(e), set

of source nodes S, terminal node t, computation

tree G = (Ω,Γ), and a feasible solution to its

Node-Arc LP that consists of the values of λ,

fθ
uv ∀θ ∈ Γ, ∀uv ∈ E, and fθ

uu ∀θ ∈ Γ, ∀u ∈ V .

output: Solution {x(B)|B ∈ B} to the Embedding-Edge

LP with
∑

B∈B x(B) = λ.

Initialize λ′ = 01

while λ′ 6= λ do2

z′ := λ ;3

B(θ|Γ|) := t ;4

B(θi) = ∅ for i = 1 to |Γ| − 1;5

for i := |Γ| to 1 do6

v := end(B(θi)) ;7

z(v)=z′ ;8

u := an element in N ′(v) such that fθi
uv > 0 ;9

if u 6= v and u ∈ B(θi) then10

Let P be the path in B(θi) upto the first11

appearance of u in it.;

Delete P from B(θi). ;12

y := minu′v′∈{uv}∪P

(

fθi
u′v′

)

;13

fθ
u′v′ := fθ

u′v′ − y ∀u′v′ ∈ {uv} ∪ P14

end15

else16

z(u) := min
(

z(v), fθi
uv

)

;17

end18

if u 6= v then19

Prefix u in B(θi) ;20

v := u ;21

Jump to line 9 ;22

end23

else24

B(η) := u, ∀η ∈ Φ↑(θi) ;25

z′ = z(u) ;26

end27

end28

x(B) := z′ ;29

λ′ := λ′ + x(B) ;30

fθ
u′v′ := fθ

u′v′ − x(B) ∀θ ∈ Γ and ∀u′v′ ∈ B(θ) ;31

fθ
v′v′ := fθ

v′v′ − x(B) ∀θ ∈ Γ and v′ = start(B(θ)) ;32

end33

Hence the statement follows.

Proof of 2: We will prove that a cyclic flow on a cycle

v1, v2, · · · , vl, v1 satisfies all the constraints in the Node-Arc

LP with λ = 0. Then clearly after subtracting this flow from

the edges of the cycle, the remaining flows in the network will

still satisfy the constraints with the same λ as before. For a

cyclic flow of type θ of volume y, the flow values are fθ
vivi+1

=

y for i = 1, 2, · · · , l − 1, fθ
vlv1

= y, and all other flow values

are equal to 0. So, for any node, any nonzero incoming flow

is ‘compensated’ by the same amount of outgoing flow of

the same type. All flow values in the self-loops are also 0.

So clearly these flows satisfy the constraints in the LP with

λ = 0. This completes the proof.

Proof of 3: Again, we will prove that the removed x(B)
amount of flows on the edges of an embedding and on the

self-loops themselves satisfy the constraints in the LP with

λ = x(B). Then the remaining flows will also satisfy the

constraints with λ replaced by λ− x(B). The subtracted flow

values are fθ
uv = x(B) for uv ∈ B(θ), fθ

uu = x(B) for

u = start(B(θ)), and all other flow values 0. We can verify

that these flows satisfy the constraints in the Node-Arc LP.

Proof of 4: The Node-Arc LP has O(m|Γ|) number of

variables fθ
uv and fθ

uu. Each deletion of flows through a cycle,

or through an embedding, makes at least one of these variables

zero. Since the number of steps in each iteration is finite, the

algorithm ends in finite time.

It can be checked that the overall complexity of Algorithm 1

is O(κ2m2).

B. Multiple trees for the same function

A function may have many possible computation trees.

For example, the well-investigated [8] ‘sum’ function

Θ(X1, X2, X3) = X1+X2+X3 may be computed by any of

the computation sequences
(

(X1 +X2) +X3

)

,
(

X1 + (X2 +
X3)

)

, or
(

X2 + (X1 + X3)
)

. In general, suppose multiple

computation trees G1,G2, . . . ,Gν are given for computing the

same function. Let Bi denote the set of all embeddings of

Gi for i = 1, 2, . . . , ν. Let B = ∪iBi denote the set of all

embeddings. Under this definition of B, the Embedding-Edge

LP for this problem is the same as that for a single tree.

One straightforward way to generalize Node-Arc LP to mul-

tiple trees is to index the edge-sets of the trees by disjoint sets

and take flow variables corresponding to all the edges of all

trees. Flow conservation equations can be written for each tree,

and we need to maximize the sum of the flows generated using

such trees. However, such a technique is highly inefficient. For

example, Θ(X1, X2, . . . , Xκ) = X1 +X2 + . . . +Xκ has κ!
number of trees, and so the number of variables and constraints

will be proportional to κ!. However, some edges of different

trees may represent an identical function of the sources. For

example, for the ‘sum’ function X1+X2+X3+X4, an edge

corresponding to the function X1 + X2 is present in each

of the trees corresponding to
(

(

(X1 + X2) + X3

)

+ X4

)

,
(

(X1 +X2) + (X3 +X4)
)

, and
(

(

(X1 +X2) +X4

)

+X3

)

.

All such edges can be identified and considered as a single

flow type. Node-Arc LP can be thus made more efficient by

constructing flow constraints for each sub-function rather than

each edge of the computation trees. This gives O(2κ) number

flow variables instead of κ! for the sum function.

The particular function Θ(X1, X2, . . . , Xκ) = X1 +X2 +
. . .+Xκ is of special theoretical as well as practical interest.

Node-Arc LP gives optimal solution with time complexity

exponential in κ and polynomial in m. This is not unexpected

since the problem is equivalent to the much investigated mul-

ticast problem. This is well-known to be NP-hard in κ. Note,

however, that our technique suggests a suboptimal technique

of considering only a subset of all possible computation trees,

which would result in sub-optimal but acceptable performance.

The study of tradeoff of restricting embeddings and reducing

the overall complexity with suboptimality of the solution,

though beyond the scope of this paper, is an interesting avenue

for further study.

IV. DISCUSSION AND CONCLUSION

In this paper, we have laid the foundations for network flow

techniques for distributed function computation. Though we

have obtained results for computation trees, we believe that

much of our techniques can be extended to larger classes

of functions, e.g., fast Fourier transform (FFT), that can be

represented by more general graphical structures like directed

acyclic graphs and hypergraphs where each edge or hyper-edge

represents a distinct function of the sources.

Our computation framework does not allow block coding,

i.e., coding across different realizations of the data. Such cod-

ing has been used in information theory and network coding

literature. We know that, in general, block coding can offer a

better computation rates. However, finding the optimal rate and

designing optimal coding schemes is a difficult problem under

this framework. Further, for undirected multicast networks, it

is known that the inter-realization coding can achieve a rate

strictly less than twice the rate achieved by routing [11]. It

would be interesting to investigate if similar result also holds

for function computation over undirected networks.

Altogether, we believe that results in this paper opens many

new avenues for further research.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory,

Algorithms, and Applications. Prentice Hall Inc, 1993.
[2] F. Shahrokhi and D. Matula, “The maximum concurrent flow problem,”

J. ACM,, vol. 37, pp. 318334, 1990.
[3] R. G. Gallager, “Finding parity in simple broadcast networks,” IEEE

Trans. on Inform. Th., vol. 34, pp. 176–180, 1988.
[4] A. Giridhar and P. R. Kumar, “Computing and communicating functions

over sensor networks,” IEEE Jour. on Sel. Areas in Commun., vol. 23,
no. 4, pp. 755–764, April 2005.

[5] S. Kamath and D. Manjunath, “On distributed function computation
in structure-free random networks,” in Proc. of IEEE ISIT, Toronto,
Canada, July 2008.

[6] T. S. Han and K. Kobayashi, “A dichotomy of functions f(x, y) of
correlated sources (x, y),” IEEE Trans. Inform. Th., vol. 33, pp. 69–86,
1987.

[7] A. Orlitsky and J. R. Roche, “Coding for computing,” IEEE Trans.

Inform. Th., vol. 47, no. 3, pp. 903–917, 2001.
[8] B. K. Rai and B. K. Dey, “Sum-networks: system of polynomial

equations, reversibility, insufficiency of linear network coding, unachiev-
ability of coding capacity,” Submitted to IEEE Trans. Inform. Th.,

available at http://arxiv.org/abs/0906.0695.
[9] R. Appuswamy, M. Franceschetti, N. Karamchandani, and K. Zeger,

“Network coding for computing part i : Cut-set bounds,” Submitted to

IEEE Trans. Inform. Th., available at http://arxiv.org/abs/0912.2820.
[10] G. Karakostas, “Faster approximation schemes for fractional multicom-

modity flow problems,” ACM Trans. Algorithms, vol. 4, pp. 1–17, 2008.
[11] Z. Li and B. Li, “Network coding in undirected networks,” in Proc. of

38th CISS, Princeton, NJ, Mar. 2004, pp. 257–262.
[12] V. Shah, B. K. Dey and D. Manjunath, “Network Flows for Functions,”

available at http://arxiv.org/abs/1009.6057 .

