
Learning to Route Queries in Unstructured P2P
Networks: Achieving Throughput Optimality

Subject to Query Resolution Constraints
Virag Shah and Gustavo de Veciana George Kesidis

ECE Dept, UT Austin EE & CSE Depts, Penn State

Abstract—Finding a document or resource in an unstructured
peer-to-peer network can be an exceedingly difficult problem. In
this paper we propose a query routing approach that accounts for
arbitrary overlay topologies, nodes with heterogeneous processing
capacity, e.g., reflecting their degree of altruism, and heteroge-
nous class-based likelihoods of query resolution at nodes which
may reflect query loads and the manner in which files/resources
are distributed across the network. The approach is shown to
be throughput optimal subject to a grade of service constraint,
i.e., stabilizes the query load subject to a guarantee that queries’
routes meet pre-specified class-based bounds on their associated
a priori probability of query resolution. An explicit character-
ization of the capacity region for such systems is given and
numerically compared to that associated with random walk
based searches. Simulation results further show the performance
benefits, in terms of mean delay, of the proposed approach.
Additional aspects associated with reducing complexity, learning,
and adaptation to class-based query resolution probabilities and
traffic loads are studied.

I. INTRODUCTION

Peer-to-peer (P2P) systems continue to find increasing and
diverse uses as a distributed, scalable and robust framework
to deliver services, e.g., file sharing, video streaming, ex-
pert/advice sharing, sensor networks, databases, etc. One of the
basic functions of such systems is that of efficiently resolving
queries or discovering files/resources. This is the problem
addressed in this paper.

There is a considerable body of work exploring the de-
sign of efficient search/routing mechanisms in structured and
unstructured P2P networks, see e.g., [1]–[10]. In structured
networks, peers/files/resources are organized to form overlays
with specific topologies and properties. Search mechanisms
that perform name resolution based on distributed hash table
(DHT) coordinate systems can be devised to achieve good
forwarding-delay properties, see e.g., [2]. In such systems,
the query traffic may depend on how keys are assigned. So,
load balancing requires proactive/reactive assignments of keys
to peers and data/service objects, e.g., [11], and possibly
exploiting network hierarchies [10]. Fundamentally, in such
networks the difficulty of search/discovery is shifted to that
of maintaining the structural invariants required to achieve
efficient query resolution particularly in dynamic settings with
peer/content churn or when reactive load balancing is required.

This work was supported by the National Science Foundation under Award
CNS-0915928.

Unstructured networks, by contrast, are easier to setup and
maintain, but their mostly ad hoc overlay topologies make re-
alizing efficient searches challenging. In a purely unstructured
P2P network, a node only knows its overlay neighbors. With
such limited information, search techniques for unstructured
networks have mostly been based on limited-scope flooding,
simulated random walks, and their variants [3]–[5]. Much
research in this area has focused on evaluating these search
techniques based on the contact time, i.e., number of hops
required to find the target, using the spectral theory of Markov
chains on (random) graphs, see e.g., [4]–[6]. Unfortunately
in heterogenous settings where service capacity or resolution
likelihoods vary across peers, such search techniques perform
poorly under high query loads.

The inefficiencies of purely unstructured networks can be
partially addressed by hybrid P2P systems, e.g., FastTrack
and Gnutella2. Such systems use a simple two-level hierarchy
where some peers serve as ‘super-peers.’ These are high degree
nodes which are well connected to other super-peers and to
a set of subordinate nodes in a hub-and-spoke manner [12].
Though such systems have advantages in terms of scalability,
proposed search techniques are still based on variants of
flooding and random walks.

The work of [7] proposes an approach where peers cache
the outcomes of past queries as informed by reverse-path
forwarding. The idea is to learn, from past experience, the best
way to forward certain classes of queries, i.e., to intelligently
“bias” their forwarding decisions by correlating classes of
queries with neighbors who can best resolve them. This
approach involves considerable overhead, is not load sensitive,
and has not yet given guarantees on performance.

Although, as will be clear in the sequel, our results are
not exclusive to hybrid P2P networks, these will serve as the
focus of the paper. We assume each super-peer contributes
a possibly heterogenous amount of processing resource for
resolving queries for the network - incentives for doing so are
outside of the scope of this paper, see e.g., [8], [9]. Super-peers
serve their subordinates by resolving queries, or forwarding
them to other super-peers. Super-peers can resolve queries by
checking the files/resources they have, as well as those of their
subordinate community. In our approach we also introduce a
notion of query classes. These might, for example, represent
types of content, such as music, films, animations, documents,
or some other classification of files/resources relevant to the

2

application at hand. The idea is that such a grouping of queries
into classes can be used as a low overhead approach to make
useful inferences on how to relay queries.

Given a hybrid P2P topology and query classification we
propose a novel query resolution mechanism akin to using
backpressure-based scheduling/routing of traffic in data net-
works [13], [14]. Our approach contrasts with previous work
on search for P2P networks in that it attempts to learn, using
backpressure on query queues, how to schedule and forward
queries in a manner that is sensitive to both the query loads
and the resolution probabilities, towards achieving provable
performance characteristics. Our approach differs from stan-
dard work on backpressure in that: (1) the destinations of
commodities, i.e., where queries are to be resolved, are not
predetermined; (2) we introduce probabilities for resolution
for query classes at super-peers which can be estimated to
guide the algorithm; and (3) we introduce a history dependent
treatment of queries, i.e., the routes of queries evolve based
on which nodes have they already visited.

Our Contributions. The main contributions of this paper
are as follows. We propose a query forwarding mechanism
for unstructured (hybrid) P2P networks with the following
properties.
1. It dynamically accounts for heterogeneity in super-peer’s
‘service rate,’ reflecting their altruism, and query loads across
the network. To the best of our knowledge, this is the first
work to rigorously account for such heterogeneity in devising
a search mechanism for P2P networks.
2. It is based on classifying queries into classes. This classi-
fication serves as a type of name aggregation, which enables
nodes to infer the likelihoods of resolving class queries, which,
in turn, are used in learning how to forward queries.
3. Our approach is fully distributed in that it involves informa-
tion sharing only amongst neighbors, and achieves throughput
optimality subject to a Grade of Service (GoS) constraint
on query resolution. Throughput optimality here refers to
stabilizing the query queues if at all possible. The GoS
constraint corresponds to guaranteeing that each query class
follows a route over which it has a reasonable ‘chance’ of
being resolved.
4. We provide and evaluate several interesting variations on our
throughput optimal mechanism that help significantly improve
the delay performance, and further reduce the complexity mak-
ing it amenable to implementation. Specifically, we formally
show that backpressure with aggregated queues, where aggre-
gation is based on queries’ histories, is throughput optimal for
fully connected super-peer networks. This provides a basis for
substantially reducing complexity by approximations, e.g., in
the case where content is randomly placed.

Organization. In Section II, we set up our basic system
model. We characterize the stability region of the network
and provide the throughput optimal protocol and several mod-
ifications in Section III. We provide some numerical results
in Section IV. We discuss estimation of query resolution
probability and ways to reduce implementation complexity in
Section V.

II. SYSTEM MODEL

The overlay network is represented by a directed graph
G = (N ,L) where N are the super-peers and L ⊂ N × N
are overlay links, which are assumed to be symmetric, i.e., if
(i, j) ∈ L then (j, i) ∈ L. We let N(i) denote the neighbors of
super-peer i. Note that subordinate peers of the hybrid network
are not explicitly represented, but are simply associated with
the super-peer to which they are connected. We assume that
time is slotted, and each super-peer i has an associated service
rate µi, corresponding to a positive integer number of queries
it is willing to resolve/forward in each slot.

Let R be the set of all files/resources that might be queried
on the network. Let C be a predefined set of query classes. For
each c ∈ C, let Rc ⊂ R be the files/resources of that class.
For each c ∈ C and i ∈ N , let Rci be the set of files/resources
in class c which are available at super-peer i or its subordinate
peers. Let Ai(t) be a random variable denoting the number of
queries arriving at super-peer i or its subordinates at time t and
νr denote the probability a query is for file/resource r ∈ R.
The classification of queries induces random variables Aci (t)
denoting the number of class c queries that arrive at super-
peer i or its subordinates at time t. We assume these random
variables are rate ergodic, have finite second moments, are
independent across slots, and thus have well defined arrival
rates denoted by λ , (λci : i ∈ N , c ∈ C) where λci denotes
the mean arrival rate of class c queries at node i

If a class c query at node i cannot be resolved it may be
forwarded to one of its neighbors. The likelihood that a node
can resolve such a query depends, not only on its class, but also
on its history, i.e., the set of nodes it visited in the past. For
example, suppose 3 nodes in a network partition files/resources
Rc associated with class c. If two of these nodes attempted
and failed to resolve a given class c query then it will for sure
be resolved at the third node. In other contexts, if a search for
a particular media file failed at many nodes, it is more likely
that the file is rare, and the conditional likelihood that it is
resolved at the next node might lower.

We capture such behavior for different classes by keeping
track of the history of a query, i.e., the subset of nodes already
visited, Thus a history is an element of powerset of N , which
we represent by H. The ‘type’ τ of a query keeps track of
its class c and its history H , i.e., τ = (c,H) ∈ T , C ×
H; we define functions such that c(τ) = c and H(τ) = H .
Further, we let ei(τ) represent the resulting type once a query
of type τ is serviced by node i. Note a query that revisits
a node does not change type, thus, ei(τ) = (c(τ), H(τ) ∪
{i}) only if i /∈ H(τ), otherwise ei(τ) = τ . In turn, we
let E−1i (τ) denote the inverse set of ei(τ), i.e., E−1i (τ) =
{(c(τ), H) : H ∪ {i} = H(τ)}. Thus, if i ∈ H(τ), E−1i (τ)
contains τ and (c(τ), H(τ) \ {i}), otherwise E−1i (τ) = ∅.

Query Resolution Probability. We model the probabilities
of resolving queries across the network by a vector p , (pτi :
i ∈ N , τ ∈ T), where pτi denotes the probability that a typical
query of class c(τ) is resolved by i conditioned on failing
attempts at nodes in H(τ). A node i can easily estimate pτi

3

by keeping track of the fraction of queries of type τ that it
was able to resolve.

Grade of Service on Query Resolution. A standard mecha-
nism adopted in P2P systems is to remove a query from the
network if it is unresolved after having traversed some fixed
number of nodes, i.e., TTL threshold. Unfortunately, while
this limits resource usage, it does not translate to a guaranteed
grade of service on query resolution. We propose a different
approach. Let φ(τ) be the a priori probability that a typical
query of class c(τ) is resolved upon visiting nodes in H(τ). As
explained below we propose enforcing the removal of a query
of type τ from the network if φ(τ) ≥ γc(τ) where γc is the
design parameter determining the GoS for class c. This guar-
antees that a typical class c query would have seen a chance of
at least γc of being resolved. Note φ(τ) does not depend on the
order of the nodes traversed by the query, but can be computed
recursively as a query traverses a sequences of nodes, e.g., if
H(τ) = {i1, i2, . . . , ik}, then φ(τ) = 1−Πk

l=1(1−pτlil), where
τl = (c(τ), {i1, i2, . . . , il−1})). For our purposes we model
such an exit strategy directly in p itself. Specifically, if at node
i we have τ ′ = (c(τ), H(τ) ∪ {i}) such that φ(τ ′) ≥ γc(τ),
then we set pτi = 1. Under this model a query of type τ exits
the network after service at node i irrespective of the nodes’
success or failure in resolving it since the GoS requirement
has been satisfied.

To summarize, the vector p does not only reflect class-based
probabilities of query resolution for various types of queries
at the nodes but also the GoS requirement, or exit criterion,
implemented by underlying query resolution protocol.

Network State and Routing Policies. We assume that arrivals
occur at the end of each slot. We let Qτi (t) denote number of
queries of type τ waiting for service at node i at the start of slot
t. Q(t) , (Qτi (t) : i ∈ N , τ ∈ T) represents the network’s
state at the start of slot t. Queries are served sequentially in
each slot according to some ‘policy’. Policies are subject to the
constraint that no more than µi

1 queries be serviced at node
i in each slot. We say a policy is ergodic if sample paths of
Q(t) are ergodic and a steady state distribution exists. Note
that ‘service’ here includes both the attempt to resolve the
query as well as determining a routing (forwarding) strategy
for the queries. Queries are forwarded at the end of the slot.

State dependent randomized policy: Given that Q(t) = q(t),
a randomized policy does the following for each node i:

1) It randomly chooses the types of the µi queries to be
served. Queries of those types are resolved on a first come
first serve basis, where if none is available a blank query
is included.

2) For each unresolved (non blank) query, it randomly
chooses a neighbor j ∈ N(i) to which it should be
forwarded.

Such a policy depends on specifying a vector π(t) = (πτij(t) :
(i, j) ∈ L, τ ∈ C) for each slot t, where πτij(t) is the

1Although we have assumed µi is integer-valued, fractional service rates
can be modeled by allowing random service rates per slot. The results herein
hold with some additional technicalities in the proofs.

probability that a given query served by node i at time t
belongs to type τ , and is forwarded to node j, if unresolved.
In general, πτij(t) can depend on q(t) and/or t explicitly. Also,
1 −

∑
j,τ π

τ
ij(t) is the probability that no type is chosen, in

which case a blank query is served. These probability vectors
determine the service rate allocations at each node. Indeed, let
µ(t) , (µτij(t) : (i, j) ∈ L, τ ∈ T), where, µτij(t) , µiπ

τ
ij(t).

Thus, determining πτij(t) is equivalent to determining µτij(t).
Further, define µτi (t) ,

∑
j µ

τ
ij(t) for all i ∈ N and τ ∈ T .

Note once again that, in general, the service rates µτi (t) may
be function of q(t) and/or t.

For simplicity, we shall refer to such policies as randomized
policies. Note that these include policies where the state
deterministically determines the query-type to be serviced and
the forwarding strategy at each node. Indeed, this corresponds
to the case where πτij(t) = 1 for some τ ∈ T and j ∈ N(i),
and 0 for others. A randomized policy is called fixed if π(t)
does not depend on t or q(t).

III. THROUGHPUT OPTIMAL QUERY RESOLUTION

In this section, we will propose a query scheduling and for-
warding policy that ensures GoS for each class, is distributed,
easy to implement, and is throughput optimal. We begin by
defining the stability for such networks and the associated
capacity region.

A. Stability & Capacity Region

We shall use the definition of network stability given in [13],
which is general in that it includes non-ergodic policies.
However for ergodic policies it is equivalent to standard of
notions of stability given in [14], [15]. For a given queue
process Qτi (t), let gτi (α) denote its ‘overflow’ function

gτi (α) = lim sup
t→∞

1

t

t∑
t′=1

1{Qτi (t′) > α} (1)

associated with the fraction of time Qτi (t) exceeds α.
Definition 1: A queue Qτi (t) is stable if gτi (α)→ 0 almost

surely as α → ∞. The network is stable if each queue is
stable.

Next we define the ‘capacity region’ for query loads on our
network.

Definition 2: The capacity region Λ is set of query arrival
rates λ, such that there exists a feasible solution to the
following linear constraints on f ,

(
fτij : (i, j) ∈ L, τ ∈ T

)
:

Capacity constraints: for all i ∈ N ,∑
j,τ

fτji +
∑
c

λci ≤ µi; (2)

Flow conservation constraints with resolution at nodes: for
all i ∈ N and τ ∈ T ,∑
j

fτij =
∑

τ ′∈E−1
i (τ)

(1− pτ
′

i)(
∑
j

fτ
′

ji + λ
c(τ ′)
i 1{H(τ ′) = ∅});

(3)
Non-negativity constraints: for all (i, j) ∈ L and τ ∈ T ,

fτij ≥ 0. (4)

4

We refer to f as flow variables, where (2) ensures that the
incoming flow to a node is less than its service rate and (3)
ensures that the total flow of types τ ′ ∈ E−1i (τ) reaching i
which is not resolved at i (left hand side) equals the flow of
type τ leaving node i.

We let Λ′ denote the interior of Λ. The following theorem,
proven in the Appendix A, makes the link between the capacity
region and stabilizability of the network.

Theorem 1: (Capacity Region and Stabilizability)
(a) If for a given arrival rate vector λ there exists a policy

under which the network is stable, then λ ∈ Λ.
(b) If λ ∈ Λ′, then there exists a fixed randomized policy

under which the network is stable.
Note that this result is general in that even full knowledge
of future events does not expand the region of stabilizable
rates. Also, while our focus, for now, is on policies where
p corresponds to the conditional probabilities of query class
resolutions subject to the GoS modification, other modifica-
tions could be made. The only restrictions on p for the above
result to hold is that each query should eventually leave the
network, and that revisits to nodes (while allowable) have a
zero probability of resolving the query.

B. Throughput optimal query resolution policies

In principle, given λ ∈ Λ′, a feasible set of network flows
can be found and, as shown in the proof of Theorem 1.b,
this can be used to devise a fixed randomized policy which
stabilizes the network. However, such a centralized policy may
not be practically feasible, moreover arrival rates λ may not
be known a priori. Below we develop a distributed dynamic
algorithm where each node i makes decisions based on its
queue states and that of its neighbors and only needs to know
(or estimate) pτi for all τ ∈ T , i.e., local information.

Basic Backpressure Algorithm: For each t, given Q(t) =
q(t) each node, say i, carries out the following steps:
1) For each neighbor j ∈ N(i) it determines

w∗ij(t) = max
τ∈T

{
qτi (t)− qei(τ)j (t)(1− pτi)

}
τ∗ij(t) = arg max

τ∈T

{
qτi (t)− qei(τ)j (t)(1− pτi)

}
2) It finds j∗i = arg maxj∈N(i) w

∗
ij(t), and lets τ∗i = τ∗ij∗i .

3) It serves min[q
τ∗i
i , µi] queries of type τ∗i , and forwards

the unresolved ones to node j∗i . This is equivalent to a
state dependent randomized algorithm with µ∗τij (t) equal to
µi when j = j∗i and τ = τ∗i , and 0 otherwise, in slot t.

Note that the weights used in above algorithm for each
link (i, j) are different from those used in traditional multi-
commodity backpressure algorithm [13], [14], where weights
are found using differences between queue backlogs of each
commodity at i and j. Here, for each type τ , one takes
difference of the queue backlog at i from that of ‘expected’
queue backlog a query of type τ would see at j if forwarded by
node i to j. To see this, observe that query of type τ would get

resolved with probability pτi and would thus leave the network.
But, with probability (1 − pτi) it would not be resolved, and
would see queue backlog of qei(τ)j at node j. Thus, the weight

taken is w∗ij(t) = maxτ∈T

{
qτi (t)− qei(τ)j (t)(1− pτi)

}
.

Theorem 2: The above backpressure algorithm is through-
put optimal, i.e., it achieves stability for any λ ∈ Λ′.

A proof of Theorem 2 is given in Appendix B. This
basic backpressure algorithm, though throughput optimal, is
wasteful. In a slot, each node i serves only the queue with
highest relative backlog. In case that particular queue has
less than µi queries waiting in it, the spare services are
provided to blank queries, even if other queues are non-empty.
We now devise a more efficient protocol that serves blank
queries only when all the queues are non-empty and is thus
work-conserving; and is still throughput optimal. As we shall
see, this provides large delay benefits over the above basic
backpressure algorithm.

The idea is, if the number of queries in the queue with
highest relative backlog is less than the total service rate, the
work conserving policy serves the queries in the queue with
second highest backlog, and so on, until either total of µi
queries are served or all the queues are empty. We formally
define the algorithm as follows.

Work Conserving Back-pressure Policy: Given Q(t) = q(t),
each node i does the following.
1) It finds the least positive integer k such
that

∑k
l=1 max

(l)
τ,j

{
qτi (t)− qei(τ)j (t)(1− pτi)

}
≥

min [µi,
∑
τ q

τ
i (t)], where max

(l)
τ refers to the lth largest

value.
2) For l = 1, 2, . . . , k, for each j ∈ N(i), it finds

w∗lij (t) = max
τ

(l)
(
qτi (t)− qei(τ)j (t)(1− pτi)

)
τ∗lij (t) = arg max

τ

(l)
(
qτi − q

ei(τ)
j (t)(1− pτi)

)
.

3) For l = 1, 2, . . . , k, it finds j∗li = arg maxj w
∗l
ij (t) and lets

τ∗li = τ∗lij (t) for j = j∗li .
4) For l = 1, . . . , k − 1, it serves all the queries of type τ∗li
and forwards the unresolved queries to node j∗li . For queries
of type τ∗ki , it serves min

(
q
τ∗ki
i (t), µi −

∑k−1
l=1 q

τ∗li
i (t)

)
of

them on an FCFS basis and forwards unresolved ones to j∗ki .

Corollary 1: The above work conserving backpressure pol-
icy is throughput optimal.
The proof is provided in Appendix C.

IV. NUMERICAL RESULTS AND SIMULATIONS

In this section, we numerically evaluate the gains in capacity
achievable by our throughput optimal backpressure algorithms
versus a baseline random walk policy. We consider a fully
connected network with 6 super-peers, N = {1, 2, . . . , 6},
supporting two query-classes c1 and c2 with homogenous
arrival rates across each nodes given by λ1 and λ2 respectively.
This reduces the dimension of the capacity region from 12 to

5

0 1 2 3 4 5 6
0

1

2

3

4

5

6

λ
1

λ
2

Case1: Backpressure

Case 1: Random walk

Case 2: Backpressure and Random walk

Case 3: Backpressure

Case 3: Random walk

28%

68%
Case 2

Case 1

Case 3

Fig. 1. Boundaries of capacity regions for the throughput optimal backpres-
sure algorithm and random walk policy for the 3 cases.

2, making it easier to study. The GoS parameters for the two
classes are set to 0.9, viz. γ1 = γ2 = 0.9. Note since super-
peer networks are typically highly connected in practice, a
fully connected network model might be representative.

In the baseline random walk policy, upon service, each
node forwards an unresolved query to a randomly selected
neighbor which was not been previously visited. To make a
fair comparison, we also enforce an exit policy, i.e., a query
exits the network once the GoS constraint has been satisfied,
see Section II. As for backpressure, we can characterize the
capacity region for this random walk policy, see [16].

We considered the following three cases, see Fig. 1.
Case 1: µi = 10 for all i ∈ N . For all types τ ∈ T such that
c(τ) = c1, pτi = 0.6 if i ∈ {1, 2, 3} and pτi = 0.1 otherwise.
Similarly, when c(τ) = c2, pτi = 0.1 if i ∈ {1, 2, 3} and
pτi = 0.6 otherwise.
Case 2: µi = 10 for all i ∈ N . pτi = 0.5 for all i ∈ N and
τ ∈ T .
Case 3: µi = 15 for i ∈ {1, 3, 5} and µi = 5 otherwise. p is
the same as in Case 1.

Fig. 1 exhibits significant capacity gains for Cases 1 and 3.
It also shows that, when µi and pτi and traffic is homogenous
over nodes as in Case 2, the random walk policy is able to bal-
ance loads achieving the capacity. However, with heterogeneity
in nodes’ query resolution probability, i.e., how they store the
files/resources of various classes, backpressure significantly
outperforms the random walk. For example, in Case 1, when
λ1 and λ2 are constrained to be equal, a 28% gain in capacity
is achieved. Further, for Case 3, the gain along the direction
λ1 = λ2 of the capacity region increases to 68%. This shows
that the advantages of load balancing by backpressure are
significant, particularly when there is heterogeneity among
nodes in their service rates, i.e., their altruism, as well. One
might further expect that with heterogeneity in traffic across
nodes the gains would also be good.

We now compare the delay performance of our backpressure
algorithms to the random walk based policy in Case 1. Fig. 2

1 1.5 2 2.5
0

20

40

60

80

100

120

140

160

Arrival rates of both classes

M
ea

n
 d

el
ay

Basic backpressure

Work conserving backpressure

Work conserving backpressure constraining revisits

Random walk constraining revisits

Fig. 2. Mean delay of resolved queries for various algorithms for Case 1.

exhibits the expected delay of for each query arrival as a
function of the arrival rates for both the classes, keeping the
arrival rates equal. It confirms our observation that the basic
backpressure algorithm is throughput optimal, but wasteful as
it is not work conserving. The work conserving algorithm
significantly improves performance. Performance is further
improved by constraining queries from revisiting nodes. With
this modification, the backpressure algorithm has excellent
delay performance as compared to the random walk policy
with the same revisit constraints and same GoS, especially at
higher loads.

V. IMPLEMENTATION AND COMPLEXITY

A. Estimating query resolution probabilities

So far we have assumed that resolution probabilities for
queries of different types are known. In practice they can
be easily estimated. Due to space limitations we will only
discuss this briefly. In order to ensure unbiased estimates be
obtained at each node, suppose a small fraction ε of all queries
is marked ‘RW’, forwarded via the random walk policy with
a large TTL, and given scheduling priority over other queries.
With a sufficiently large TTL this ensures that each node will
see a random sample of all query types it could see. Suppose
all other queries are treated according to our backpressure
policy based on estimated query resolution probabilities. After
a sufficiently long time the estimates should converge to a suf-
ficient degree of accuracy, at which point marking can stop and
the backpressure algorithm can ensure throughput optimality.
Alternatively, one can always have a fraction ε of the queries
marked and routed accordingly, to allow persistent tracking
of changes in resolution probabilities or the popularities of
files/resources. Under such circumstances it is easy to see that
some of the system capacity will be used up by RW queries
and the remaining query load would be routed in a throughput
optimal manner with respect to a reduced capacity region
depending on resources consumed by RW queries, which in
turn are controlled by appropriately choosing ε and the TTL.

B. Reducing complexity

Not unlike standard backpressure-based routing, our policies
suffer from a major drawback: each node needs to share the

6

state of its potentially large number of non-empty queues with
its neighbors. For backpressure-based routing the number of
queues per node corresponds to the number of flows (com-
modities) in the network. In our context, the number of queues
per node corresponds to number of query types it could see,
i.e., worst case Θ(|C|2|N |). In this section we propose simple
modifications and approximations that considerably reduce the
overheads, albeit with some penalty in the performance. The
key idea is to define equivalence classes (called levels in
the sequel) of query types that share a ‘similar’ history, in
the sense that they have similar conditional probabilities of
resolution, and have them share a queue. For example, all
query types of class c which have visited the same number
of nodes k, i.e., such that c(τ) = c and |H(τ)| = k
might be grouped together, reducing the number of queues to
Θ(|C||N |) or fewer. Alternatively, we will show that one can
further reduce overheads by approximately grouping similar
query types based on the cumulative number of class c(τ)
files/resources stored at nodes in H(τ). By grouping them
into L levels the number of queues get reduced to Θ(|C|L).
Intuitively, such queries have seen similar opportunities if
files/resources are randomly made available in the network.

Network with random file/resource placement. To better
understand when such aggregation makes sense, consider a
network where files/resources are randomly and independently
available at each node, i.e., at the super-peers and/or their
associated subordinate peers. Such independence might make
sense in an unstructured network where resources and sub-
ordinate associations might be ad hoc. Random placement of
files/resources will be modeled as follows. The probability that
node i has resource r ∈ Rc is given by ρca,i(r) = βci p

c
s(r)

where pcs(r), r ∈ Rc is a probability measure capturing the
relative availability of class c file/resource r and βci is a
number capturing the willingness of node i to store class c
files/resources. Note that (ρca,i(r) : r ∈ Rc) is not a probability
measure; instead we require that βci be such that ρca,i(r) ≤ 1
for all r ∈ Rc. We let pcq(r), r ∈ Rc be a probability measure
capturing the likelihood a query of type c is for file/resource
r, i.e., in terms of our νr we have that for all r ∈ Rc

pcq(r) =
νr∑

s∈Rc
νs
.

In summary pcq() captures the relative popularity of various
queries for resources in class c, while pca() captures the
relative availability of various resources of class c and βci the
willingness of node i to store class c files/resources. Finally
under this network with random file/resource placements the
average number of class c resources at node i would be

∑
r∈Rc

ρca,i(r) =
∑
r∈Rc

βci p
c
s(r) = βci .

Next let us compute p̄τi the probability that a query of type
τ is resolved at node i which in this section will be averaged

over random file/resource distributions. One can show that

p̄τi =

∑
r∈Rc

βci p
c
s(r)

(∏
j∈H(τ)(1− βcjpcs(r))

)
∑
r∈Rc

pcq(r)
(

1−
∏
j∈H(τ)(1− βcjpcs(r)

) (5)

Note that although this represents an average over network
random file/resource distributions one can show that in a net-
work with large number of files there is a concentration result
where this probability is representative of a given realization
of the random network. Further it is easy to see that if βci = βc

for all i then p̄τi is depends solely on the number of nodes in
H(τ). Thus all queries for class c files/resources that have
visited the same number of nodes can be grouped together.
One can further roughly approximate the above expression to
obtain

p̄τi ≈

∑
r∈Rc

βci p
c
s(r)

(
1− pcs(r)

∑
j∈H(τ) β

c
j

)
(∑

j∈H(τ) β
c
j

) (∑
r∈Rc

pcq(r)p
c
s(r)

) . (6)

Note that under this approximation p̄τi is simply a function of∑
j∈H(τ) β

c
j corresponding to the cumulative average number

of files of class c seen at nodes in H(τ). βcj can be estimated
by keeping track of the number of distinct queries resolved by
node i. Thus as proposed in the sequel, one could conceivably
aggregate query types which have seen similar numbers of
files in their history and still roughly capture the correct
probabilities of query resolutions in the network. This would
lead to substantial reductions in complexity.

Realizing backpressure with aggregated types. We formally
define aggregation of query types as follows.

Definition 3: A function a : T → A is a valid aggregation
function if for any τ1, τ2 ∈ T such that c(τ1) = c(τ2) and
a(τ1) = a(τ2) we have pτ1i = pτ2i , for all i ∈ (H(τ1) ∩
H(τ2)) ∪ (H(τ1)c ∪H(τ2)c).
Thus, for example, a(τ) could denote the number of nodes
visited by a query of a given class or number of files seen of
a given class, or some other appropriate aggregation criterion.

In this section we focus on a fully connected network,
and without loss of generality restrict nodes from forwarding
queries to nodes that they have already visited. Since i ∈ H(τ)
implies that pτi = 0, revisiting a node does not help resolve a
query, and since the network is fully connected, it can not help
find an alternate route. We partition T into sets T1, T2, . . . ,
such that, each τ ∈ T` has exactly same a(τ) and c(τ), for
each index `. We call such indices ‘levels’. Let Γ be set of all
levels `. Now, each node maintains a queue for each ` ∈ Γ.
Let Q′`i(t) be the total number of queries in level ` waiting
to be served at node i, at the beginning of each slot, and let
Q′(t) , (Q′

`
i(t) : i ∈ N , ` ∈ Γ) represent the network’s queue

states in slot t. One important outcome of constraining queries
from revisiting nodes is that the probability of resolution for
all the queries in Q′`i(t) is the same, say p′`i , since otherwise
revisiting queries will have probability 0. By analogy to the
definition of ei(τ) and E−1i (τ), define ψi(`) and Ψ−1i (`) as,
ψi(`) = `′ if ∀τ ∈ T`, ei(τ) ∈ T`′ , and Ψ−1i (`) is its inverse
set. We now provide our modified backpressure policy.

7

Back-pressure algorithm with aggregation: Below is a
distributed dynamic throughput optimal policy for a fully
connected network. Given Q′(t) = q′(t), each node i does
the following,
1) For each neighbor j, it determines

w∗ij(t) = max
`

(
q′
`
i(t)− q′

ψi(`)
j (t)(1− p′`i)

)
`∗ij(t) = arg max

`

(
q′
`
i(t)− q′

ψi(`)
j (t)(1− p′`i)

)
.

2) It finds j∗i = arg maxj w
∗
ij(t) and lets `∗i = `∗ij(t) for

j = j∗i ,
3) It serves a maximum of µi queries from level `∗i which have
not visited node j∗i on FCFS basis and forwards the unresolved
queries to node j∗i . If the total number of such queries is less
than µi, then it serves blank queries for the spare services.

Theorem 3: For a fully connected network and valid aggre-
gation function a() the backpressure algorithm with aggrega-
tion is throughput optimal.

For proof of the above theorem, see [16]. Note that, as with
the basic backpressure policy, the above modified policy is
wasteful and can be made work conserving along the lines of
work conserving version of the basic backpressure algorithm
in Section III-B. Further modifications are required for the case
of a general network topology, since a case may arise where a
query has already visited all the neighbors of its current node.
For such conditions, we present a simple modification. After
deciding on j∗i and `∗i , node i serves not only queries in queue
q′
`∗i
i (t) which have not visited node j∗i , but also those queries

in q′`
∗
i
i (t) which have visited all its neighbors on FCFS basis.

Such a scheme would perform well for networks with large
enough degree, since cases where a query has visited all the
neighbors would occur rarely.

Approximate aggregation: The total number of queues can
be further lowered significantly by aggregating types with
roughly similar a(τ), such that queries in a given level have
similar pτi . Here, each node can decide its own levels. Since
queries in a coarsely aggregated level at node i may join
different queues when forwarded to node j, a function of
queue states can be used to compute the weights used by the
backpressure algorithm. Note that the error due to approximate
aggregation is only in deciding the scheduling and the for-
warding policy; each query-class is still accurately provided its
promised GoS of γc. For this, each node i updates the embed-
ded φ(τ) in the query by using φ(τ ′) = φ(τ) + pτi (1−φ(τ)).
Also, instead of learning pτi for each τ , nodes can simply learn
and store resolution probability as a function of a(τ) in a form
of look-up table.

VI. CONCLUSION

To summarize, we provided a novel, distributed, and ef-
ficient search policy for unstructured peer-to-peer networks
with super-peers. Our backpressure based policy can provide
capacity gains of as large as 68% over random walk policies.

We also provided modifications to the algorithm that make it
amenable to implementation.

APPENDIX

A. Proof of Theorem 1
To save space, the detailed proof of part (a) is given in

[16]. It basically shows that when queues are ‘well-behaved’,
the flows over links, in terms of average number of queries
transmitted, converge to the desired values. We provide com-
plete proof of part (b) of the theorem here. Before proving part
(b), we first provide Lemmas 1 and 2 which shall be useful.

Lemma 1: For any randomized policy, we have

E

∑
τ,i

(Qτi (t+ 1))2 − (Qτi (t))2
∣∣∣Q(t)

 ≤ B− 2
∑
τ,i

Qτi (t)

×

µτi (t)−
∑

j,τ ′∈E−1
j (τ)

µτ
′

ji(t)(1− pτ
′

j)− λc(τ)i 1{H(τ) = ∅}

where B is a constant.

Proof: For a given policy, let F τij(t) be unresolved queries
of type τ received at j from i at time t. Thus,

E
[
F τij(t)

]
≤

∑
τ ′∈E−1

i (τ)

µτ
′

ij (t)(1− pτ
′

i). (7)

The evolution of queues for each type τ at node i can be given
by,

Qτi (t+ 1) = max(Qτi (t)− µτi (t), 0) +
∑

j∈N(i)

F τji(t)

+A
c(τ)
i (t)1{H(τ) = ∅}. (8)

It can be easily checked that the above implies,

(Qτi (t+ 1))2 − (Qτi (t))2

≤ (µτi (t))
2

+

 ∑
j∈N(i)

F τji(t) +A
c(τ)
i (t)1{H(τ) = ∅}

2

−2Qτi (t)

µτi (t)−
∑

j∈N(i)

F τji(t)−A
c(τ)
i (t)1{H(τ) = ∅}

Summing over all τ and i, we get∑
τ,i

(
(Qτi (t+ 1))2 − (Qτi (t))2

)
≤ B′(t)− 2

∑
τ,i

Qτi (t)

×

µτi (t)−
∑

j∈N(i)

F τji(t)−A
c(τ)
i (t)1{H(τ) = ∅}

 (9)

where

B′(t) =
∑
τ,i

(µτi (t))
2

+

 ∑
j∈N(i)

F τji(t)

2

+
∑
τ,i

(
A
c(τ)
i (t)1{H(τ) = ∅}

)2
(10)

8

since
∑
j∈N(i) F

τ
ji(t)A

c(τ)
i (t)1{H(τ) = ∅} = 0 as

F τji(t)1{H(τ) = ∅} = 0. Here,
∑
τ,i (µτi (t))

2 ≤
∑
i(µi)

2.
Also,

∑
τ,i

 ∑
j∈N(i)

F τji(t)

2

≤

∑
τ,i

∑
τ ′∈E−1

j (τ),j

µτ
′

ji(t)

2

≤
∑
i

(µi)
2.

Further,
∑
τ,i

(
A
c(τ)
i (t)1{H(τ) = ∅}

)2
=

∑
c,i(A

τ
i (t))2.

Thus, E [B′(t)] ≤ 2
∑
i(µi)

2+
∑
c,iE

[
(Aτi (t))2

]
, B. Thus,

by talking expectation on both sides of (9), we get,

∑
τ,i

E
[
(Qτi (t+ 1))2 − (Qτi (t))2

]
≤ B − 2

∑
τ,i

Qτi (t)

×E

µτi (t)−
∑

j∈N(i)

F τji(t)−A
c(τ)
i (t)1{H(τ) = ∅}

 (11)

from which the lemma follows by using (7).

Lemma 2: Given λ ∈ Λ′, one can obtain a fixed valid
assignment µ(t) = (µ̃τij) (and correspondingly, µτi (t) = µ̃τi)
such that, for some ετi > 0 and all for all i ∈ N and τ ∈ T ,

µ̃τi −
∑

j,τ ′∈E−1
j (τ)

µ̃τ
′

ji(1− pτ
′

j)−λc(τ)i 1{H(τ) = ∅} = ετi .

Proof: The definition of Λ allows for exogenous arrivals
λ
c(τ)
i only for the types τ such that H(τ) = ∅. We first gen-

eralize it for the hypothetical case where exogenous arrivals
are allowed for all types. Consider generalized arrival rates
λ̃ = (λ̃τi : i ∈ N , τ ∈ T).

Definition 4: The generalized capacity region Λ̃ is set of
generalized arrival rates λ̃, such that there exists a feasible
solution to the following linear constraints on variables f̃ ,
(f̃τij : ij ∈ L, τ ∈ T):

1) Capacity constraints: for all i ∈ N ,∑
j,τ

f̃τji +
∑
τ

λ̃τi ≤ µ̃i (12)

2) Flow conservation constraints with resolution at nodes:
for all i ∈ N and τ ∈ T ,

∑
τ ′∈E−1

i (τ)

(1 − pτ
′

i)

∑
j

f̃τ
′

ji + λ̃τ
′

i

 =
∑
j

f̃τij (13)

3) Non-negativity constraints: for all (i, j) ∈ L and τ ∈ T ,

f̃τij ≥ 0. (14)

Properties of Λ̃: a) For each λ ∈ Λ, we have a λ̃ ∈ Λ̃ such
that λ̃τi = λ

c(τ)
i 1{H(τ) = ∅}. b) Λ̃ is a convex set. c) For

each node i and type τ , consider matrix δ̄τi ∈ N × T which
has value 1 only in (i, τ)th position, and 0 everywhere else.
For each i and τ , there exist a constant γτi > 0 such that
γτi δ̄

τ
i ∈ Λ̃.

Proof of Properties of Λ̃: a) follows from definition of Λ,
since putting λ̃τi = λ

c(τ)
i 1{H(τ) = ∅} in the constraints for

Λ̃, satisfies the constraints of Λ. b) follows from linearity of
constraints of Λ̃. c) follows from our description of p, the fact
that the network is connected, and that µi > 0.

Now, consider λ ∈ Λ′. By definition, ∃ε > 0 such that
(1+ε)λ ∈ Λ. Using property a), find λ̃ such that (1+ε)λ̃ ∈ Λ̃,
and λ̃ = (λ

c(τ)
i 1{H(τ) = ∅}). Thus, by convexity of Λ̃ and

property c), λ̃+ε′
∑
i,τ γ

τ
i δ̄
τ
i ∈ Λ̃, where ε′ = 1

|N ||C| (1−
1

1+ε).
Putting ετi = ε′γτi , we get λ̃ + ε̄ ∈ Λ̃, where ε̄ = (ετi).

Now, obtain a feasible solution f̃ ′ = (f̃ ′
τ

ij , ij ∈ L, τ ∈ T)

for constraints (12)-(14) for general arrivals λ̃+ ε̄, where λ̃ =

(λ
c(τ)
i 1{H(τ) = ∅}). Using this solution, set for all i and τ

µ̃τi =
∑
j

f̃ ′
τ

ji + λ
c(τ)
i 1{H(τ) = ∅}+ ετi , (15)

and

µ̃τij = µτi
f̃ ′
ei(τ)

ij∑
j′ f̃
′ei(τ)
ij′

. (16)

Note that, this assignment of µ̃τij (and corresponding πτij) is
valid, since from constraint (12) we get

∑
j,τ µ

τ
ij ≤ µi for all

i. Using these assignments and constraint (13), and one can
check that, for all i ∈ N and τ ∈ T∑

τ ′∈E−1
i (τ)

(1− pτ
′

i)µ̃τ
′

ij = f̃ ′
τ

ij . (17)

Putting this in (15), we get that for all i ∈ N and τ ∈ T∑
j

∑
τ ′∈E−1

j (τ)

µ̃τ
′

ji(1− pτ
′

j) + λ
c(τ)
i 1{H(τ) = ∅}+ ετi

= µ̃τi . (18)

Proof of Theorem 1 part (b): Under a fixed randomized pol-
icy, Q(t) forms a Markov chain. Consider candidate Lyapunov
function L(Q) =

∑
i,τ (Qτi)

2. Thus, if we show that drift

∆Q(t) , E
[∑

τ,i(Q
τ
i (t+ 1))2 − (Qτi (t))2

∣∣Q(t)
]

is negative
for all but finite set values of Q(t), it would imply that L(Q)
is a Lyapunov function, thus proving that the Markov chain
is positive recurrent, from which stability follows. Lemma 1
provides an upper-bound on ∆Q(t). Substituting the result of
Lemma 2 in this bound, we get

∆Q(t) ≤ B − 2
∑
τ,i

Qτi (t)ετi (19)

where B is a constant, and ετi > 0,∀i, τ . Thus, for the
randomized policy given in Lemma 2, drift ∆Q(t) is negative
for all but finite Q(t), therefore obtaining stability.

B. Proof of Theorem 2

Before proving Theorem 2, we first provide Lemma 3. We
then use Lemmas 1 and 3 to prove the theorem.

9

Lemma 3: For the given back pressure algorithm, if λ is in
the interior of Λ, then, for some ε̄ > 0,

∑
τ,i

Qτi (t)

µ∗τi (t)−
∑

j,τ ′∈E−1
j (τ)

µ∗τ
′

ji (t)(1− pτ
′

j)

≥
∑
τ,i

Qτi (t)
(
λ
c(τ)
i 1{H(τ) = ∅}+ ετi

)
(20)

Proof: From Lemma 2, there exists a stationary static
policy, that does not depend on Q(t), and determines valid
fixed service rates µ̃τij such that

∑
τ,i

Qτi (t)

µ̃τi − ∑
j,τ ′∈E−1

j (τ)

µ̃τ
′

ji(1− pτ
′

j)

=
∑
τ,i

Qτi (t)
(
λ
c(τ)
i 1{H(τ) = ∅}+ ετi

)
, (21)

By rearranging terms of L.H.S., we get,

∑
τ,i

Qτi (t)

∑
j

µ̃τij −
∑

j,τ ′∈E−1
j (τ)

µ̃τ
′

ji(1− pτ
′

j)

=

∑
(i,j)∈L,τ

µ̃τij

(
Qτi (t)−Qei(τ)j (t)(1− pτi)

)
≤

∑
(i,j)∈L,τ

µ̃τijw
∗
ij(t) ≤

∑
(i,j)∈L,τ

µ∗τij (t)w∗ij(t), (22)

where the last inequality follows from the choice of µ∗τij (t) by
the back pressure algorithm that maximizes the upper bound
by assigning the entire service rate of µi to a link that has
maximum weight w∗ij(t). This also implies,∑

(i,j)∈L,τ

µ∗τij (t)w∗ij(t)

=
∑

(i,j)∈L,τ

µ∗τij (t)
(
Qτi (t)−Qei(τ)j (t)(1− pτi)

)

=
∑
τ,i

Qτi (t)

µ∗τi (t)−
∑

j,τ ′∈E−1
j (τ)

µ∗τ
′

ji (t)(1− pτ
′

j)

 .

(23)

From (21),(22) and (23), the lemma follows.

Proof of Theorem 2: Since the basic backpressure algorithm
is a state dependent randomized policy, Lemma 1 implies that,

E

∑
τ,i

(Qτi (t+ 1))2 − (Qτi (t))2
∣∣∣∣Q(t)

 ≤ B− 2
∑
τ,i

Qτi (t)

×

µ∗τi (t)−
∑

j,τ ′∈E−1
j (τ)

µ∗τ
′

ji (t)(1− pτ
′

j)− λc(τ)i 1{H(τ) = ∅}

(24)

Note that Q(t) forms a Markov chain for the back pressure
algorithm since µ∗τij (t) are a function of Q(t). Thus, again, if
we show that drift ∆Q(t) is negative for all but finite values of
Q(t), it would imply that L(Q) =

∑
i,τ (Qτi)

2 is a Lyapunov
function, thus proving that system is stable. Lemma 3 shows
that the bound on ∆Q(t) is only more negative compared
to policy used in establishing stability for each λ ∈ Λ′ in
Theorem 1. Thus, from Lemma 3 and (24), we get ∆Q(t) ≤
B−2

∑
τ,iQ

τ
i (t)ετi , which is negative for all but finite values

of Q(t).

C. Proof of Corollary 1

Consider all states of Q(t) such that Qτi (t) ≥ µi,∀i, τ .
For all these states, the work conserving back pressure policy
is equivalent to the basic backpressure algorithm. Thus, from
proof of Theorem 2, if λ ∈ Λ′, the work conserving back
pressure policy has negative drift for all but finite values of
Q(t).

REFERENCES

[1] Wikipedia, “Peer-to-peer — Wikipedia, the free encyclopedia.”
http://en.wikipedia.org/wiki/Peer-to-peer, 2011.

[2] I. Stoica et al., “Chord: a scalable peer-to-peer lookup protocol for
internet applications,” IEEE/ACM Trans. Networking, vol. 11, no. 1,
pp. 17–32, 2003.

[3] X. Li and J. Wu, “Searching techniques in peer-to-peer networks,” in
Handbook of Theoretical and Algorithmic Aspects of Ad Hoc, Sensor,
and Peer-to-Peer Networks, CRC Press, 2004.

[4] C. Gkantsidis, M. Mihail, and A. Saberi, “Random walks in peer-to-peer
networks,” in Proc. IEEE INFOCOM, 2004.

[5] C. Gkantsidis, M. Mihail, and A. Saberi, “Hybrid search schemes for
unstructured peer to peer networks,” in Proc. IEEE INFOCOM, 2005.

[6] S. Ioannidis and P. Marbach, “On the design of hybrid peer-to-peer
systems,” in Proc. ACM SIGMETRICS, 2008.

[7] P. Patankar et al., “Peer-to-peer unstructured anycasting using correlated
swarms,” in Proc. ITC, 2009.

[8] R. Gupta and A. Somani, “An incentive driven lookup protocol for
chord-based peer-to-peer (p2p) networks,” in International Conference
on High Performance Computing, 2004.

[9] D. Menasche, L. Massoulie, and D. Towsley, “Reciprocity and barter in
peer-to-peer systems,” in Proc. IEEE INFOCOM, 2010.

[10] B. Mitra et al., “How do superpeer networks emerge?,” in Proc. IEEE
INFOCOM, 2010.

[11] D. Karger and M. Ruhl, “Simple efficient load balancing algorithms for
peer-to-peer systems,” in Proc. 16th ACM SPAA, 2004.

[12] B. Yang and H. Garcia-Molina, “Designing a super-peer network,” in
Proc. IEEE ICDE, 2003.

[13] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation
and routing for time varying wireless networks,” in IEEE INFOCOM,
2003.

[14] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput
in multihop radio networks,” IEEE Trans. Automatic Control, vol. 37,
pp. 1936–1948, 1992.

[15] S. Asmussen, Applied probability and queues. Springer, 1987.
[16] V. Shah, G. de Veciana, and G. Kesidis, “Learning to route queries

in unstructured p2p networks: Achieving throughput optimality sub-
ject to query resolution constraints.” Technical Report, available at
http://www.ece.utexas.edu/%7Egustavo/TechReportSVK11.pdf, 2011.

