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Abstract—Large scale Content Delivery Networks (CDNs) are
one of the key components of today’s information infrastructure.
This paper proposes and analyzes a simple stochastic model for a
file-server system wherein servers can work together, as a pooled
resource, to meet individual user requests. In such systems basic
questions include: How and where to replicate files? What is
the impact of dynamic service allocation across request types,
and whether it can provide substantial gains over simpler load
balancing policies? What are tradeoffs amongst performance,
reliability and recovery costs, and energy? The paper provides
both explicit and asymptotic approximations for large systems
towards addressing these basic questions.

I. INTRODUCTION

We are in the midst of a paradigm shift where the data
from end users and content providers including videos, web
content and files are stored in virtualized storage pools gen-
erally hosted by third parties operating large data centers.
Although this type of infrastructure is prevalent, the design-
space tradeoffs of such massive storage and delivery systems
are not well understood. Some metrics of interest for such
systems include: 1) service capacity available to end users
and the resulting perceived performance; 2) reliability and
recovery costs; and, 3) energy costs. Amongst these metrics
there are various tradeoffs that can be realized. For example,
by increasing the total number of active servers, or scaling the
speed of individual servers, one can tradeoff energy cost with
performance. A more subtle example, discussed further in the
sequel, involves quantifying the trade off between spreading
multiple copies of files across pools of servers so as to improve
performance and cost in recovery from large-scale server loss
events, e.g., power outages [5]. The focus of this paper lies in
developing robust large scale models enabling a quantitative
study of such tradeoffs.

Our contributions. The key challenge we tackle is the
performance evaluation of large scale storage systems wherein
multiple file copies are placed across pools of servers subject
to stochastic loads. We consider a system model where ar-
riving file requests/jobs/flows can be collectively served by
servers, i.e., different chunks of each file can be concurrently
downloaded from servers currently storing the file – this is
akin to the service model in peer-to-peer systems. Since each
server can store multiple files, which are themselves replicated
across sets of servers, the service capacity available to serve
requests for different files are dynamically coupled. Indeed,
as explained in the sequel, ongoing file requests can share

server capacity subject to various possible ‘fairness’ objectives
rendering performance evaluation quite challenging.

The main contributions of this paper can be summarized as
follows. First, we propose a file-server model and show that the
overall service capacity set has polymatroid structure. This in
turn allows us to develop an explicit expression for the mean
file transfer delay experienced by file requests. Second, we
prove an asymptotic result for symmetric large-scale systems
wherein the distribution concentrates at a mode. This result
provides an easily computable approximation for the mean
delay which is used to quantify system tradeoffs. Finally,
these analytical results are used to develop and quantify
three key insights regarding large file-server systems: a) We
show how dynamic service capacity allocation across ongoing
demands is impacted by the structure of overlapping resource
pools (file placement) and quantify the substantial performance
benefits over simpler load balancing strategies that assign file
requests at random or to least loaded servers. b) We show that
performance gains resulting from pooling of servers, although
significant, quickly saturate as we increase the pool size. Thus
one can engineer such systems so as to realize close to optimal
performance while simultaneously achieving high reliability
and thus low recovery costs. c) For a simple speed scaling
policy where the processor runs at low speed (or halts) when
idle and a high but fixed speed when busy, we show that
dynamic service capacity allocation can achieve up to 70%
energy saving as compared to simpler policies.

Related work. There are several works in the literature
studying energy-performance tradeoffs, see eg [7], [12] and
citations therein. In [7], the authors provide an approximation
to the number of servers that should be active so as to optimize
the energy-delay product. Similarly, [21] investigates speed
scaling so as to optimize a weighted average of energy and
mean delay for a single server system. In [12], the authors
consider energy costs of switching servers on and off and
provide an optimal online algorithm to optimize overall convex
cost functions that can include performance and energy costs.
In these works a server can handle any job request. By contrast
in this paper we are particularly interested in the situations
wherein pools of servers’ capabilities are constrained (e.g., by
the files they have available) and the coupling amongst these
critically impacts energy-performance tradeoffs.

There has also been previous work considering file place-
ment across servers. For example, [11] studies the file place-
ment across servers so as to minimize bandwidth inefficiency
when there are a fixed set of file requests. Another line of978-1-4799-3360-0/14/$31.00 c© 2014 IEEE



work has focused on online packing/placement of dynamically
arriving files/objects under constraints on available resources,
e.g., [18]. By contrast with these works, we assume file
placements across servers are fixed and we examine the
performance impact of this when the system is subject to
stochastic loads.

In the asymptotic large system regime we consider, our
model is related to the super-market queueing model studied
in [4], [20] where each arriving request is assigned to the least
loaded of d ≥ 2 randomly chosen servers. The key difference
between the super-market model and our model is that, rather
than assigning a file request to a single server, we allow a
file request to be served by multiple servers simultaneously
in a fashion similar to multipath routing architectures studied
in [8]–[10]. Studies of the benefits of doing so have been
previously carried out, e.g., [10], and show the benefit of
coordinating rate over multiple paths in terms of the worst
case rate achieved by the users in a static setting. In this paper
we are also interested in quantifying the benefits of pooling
service capacity from multiple servers but for a system subject
to stochastic loads.

As will be discussed in more detail below this paper draws
on, and extends, previous work on bandwidth sharing models;
in particular “balanced fair” allocations, see e.g., [1]–[3]. Such
allocations are a useful device in that they are amenable
to analysis, are provably insensitive to job size distribution,
and yet serve to approximate various forms of ‘fair’ resource
sharing policies considered in the literature and in practice [1],
[13].

Organization of the paper. In Section II we develop our
system model for file server systems under stochastic loads.
In Section III we discuss fairness based resource allocation
and provide an exact analysis for mean delay in file transfers
under balanced fair service allocation. Section IV provides an
asymptotic expression for mean delay which we then use to
compare the performance of our policy with other allocation
policies. Section V includes a discussion of system tradeoffs
involving mean delay, recovery costs and energy consumption.
We conclude in Section VI.

II. SYSTEM MODEL: FILE-SERVER SYSTEM, DYNAMICS,
AND SERVICE CAPACITY

Let F denote a set of files and S a set of servers in a file-
server system where |F | = n and |S| = m. For each file i ∈ F
let Si ⊂ S denote the set of servers that store, and thus can
serve file i; thus S = (Si : i ∈ F ) captures a file replication
policy. Suppose each server s ∈ S has fixed service capacity
of µs bits per second. For each A ⊂ F let S(A) , ∪i∈ASi
and µ(A) ,

∑
s∈S(A) µs denote the set of servers capable

of serving one or more of the files in A and the associated
service capacity. In summary,

(
F, S, µ;S

)
collectively define

a file-server system.
Requests for file i ∈ F arrive according to an independent

Poisson process with rate λi. We shall use terms request, flow
and job interchangeably. Similarly, we refer to each file i ∈ F
as a file or a class interchangeably. Each request has a service

requirement corresponding to, for example, the number of
bits it needs to download from the file-server system. Service
requirements for requests for file i ∈ F are i.i.d with mean
νi bits. This can model, for example, requests for a part of a
file. Let ρ = (ρi : i ∈ F ), where ρi = λiνi denotes the load
associated with class i.

Flows arrive to the system at total rate
∑
i∈F λi. Let uk

denote the flow corresponding to the kth arrival after time
t = 0. Let qi(t) denote the set of ongoing flows of class i at
time t, i.e., flows which have arrived but have not completed
service, and q(t) = (qi(t) : i ∈ F ). For each A ⊂ F , let
qA(t) = ∪i∈Aqi(t), i.e., the set of all active flows whose class
is in A. Let x(t) = (xi(t) : i ∈ F ), where xi(t) , |qi(t)|, i.e.,
x(t) captures the number of ongoing flows in each class. We
refer to x(t) as the state of the system at time t.

For any v ∈ qi(t), let bv(t) be the rate in bits per second at
which flow v is served at time t by the file-server system. At
any time t, we assume that the rates bv(t) for all v ∈ qF (t)
depend only on x(t) and the classes to which they belong.
Thus for any i ∈ F and u, v ∈ qi(t) we have bu(t) = bv(t).
Further, let ri(x′) be the total rate at which class i flows
are served at time t when x(t) = x′, i.e., at any time t,
ri(x(t)) =

∑
v∈qi(t) bv(t). Let r(x′) = (ri(x

′) : i ∈ F ).
To visualize this system, think of the system as consisting
of n queues, one corresponding to each file, with coupled
service rates r(x(t)). Each queue in turn allocates its rate
among its active users equally akin to processor sharing, i.e.,
bv(t) = ri(x(t))/xi(t) for each v ∈ qi(t), if xi(t) 6= 0. For
any x(t), let Ax(t) denote the set of active classes, i.e., the
classes with at least one ongoing flow. If flow v arrives at time
tav and has service requirement ev , then it departs at time tdv
such that ev =

∫ tdv
tav
bv(t)dt.

We will consider the case where the system’s service
capacity can be shared dynamically among ongoing requests.
In particular multiple servers can contribute towards servicing
a given request, e.g., by retrieving distinct chunks of a file
from different servers, and thus allowing pooling of capacity of
multiple servers. Let bv,s(t) be the rate at which server s serves
request v at time t. A request v for file i, i.e., v ∈ qi(t), can
only be served by servers which have that file, thus bv,s(t) = 0
if s /∈ Si, subject to the following assumption.

Assumption 1. Sharing of system service capacity among
ongoing flows is such that:

1) Each server can concurrently serve multiple requests as
long as

∑
v bv,s(t) ≤ µs for all t.

2) Multiple servers can concurrently serve a request v at
time t giving a total service rate bv(t) =

∑
s bv,s(t).

3) The service rate bv,s(t) allocated to a flow v at server s
at time t depends only on its flow’s class and the numbers
of ongoing flows x(t). Thus a flow’s overall service rate
bv(t) as well as the aggregate service rate allocated to
flows in each class r(x(t)) = (ri(x(t)) : i ∈ F ) depend
only on the number of ongoing flows.

Note that service rate allocations depend only on the queue
length x(t) and thus can not depend on the residual file



sizes of ongoing flows. The constraints
∑
v bv,s(t) ≤ µs can

model servers’ processing capacity or their network access
bottleneck. For simplicity, we shall refer to these as server
capacity constraints.

Under Assumption 1 we will show that the set of feasible
service-rate allocations across classes, i.e., the capacity region,
is a polymatroid. We say a polytope Ĉ is a polymatroid if there
exists a set function µ̂ on F such that

Ĉ =

{
r ≥ 0 :

∑
i∈A

ri ≤ µ̂(A), ∀A ⊂ F

}
,

and if µ̂ satisfies the following properties:
1) Normalized: µ̂(∅) = 0.
2) Monotonic: if A ⊂ B, µ̂(A) ≤ µ̂(B).
3) Submodular: for all A,B ⊂ F ,

µ̂(A) + µ̂(B) ≥ µ̂(A ∪B) + µ̂(A ∩B).

A function µ̂ satisfying the above properties is called a rank
function. Polymatroids and submodular functions are well
studied in the literature, see e.g., [16]. Each polymatroid
Ĉ has a special property that for any r ∈ Ĉ, there exists
r′ ≥ r such that r′ ∈ D , {r ∈ Ĉ :

∑
i∈F ri = µ(F )} [6].

Also, as evident from the definition, for any A ⊂ F the set
{r ∈ Ĉ : ri = 0,∀i /∈ A} is also a polymatroid, with a rank
function which is the restriction of µ to subsets of A.

Theorem 1. Consider a file-server system defined by(
F, S, µ;S

)
and let

C , {r ≥ 0 :
∑
i∈A

ri ≤ µ(A), ∀A ⊂ F}.

Then, the following hold
1) µ is a rank function.
2) C is the polymatroid capacity region associated with the
file server system.

A sketch of proof of above theorem is provided in the
Appendix due to space constraints. For detailed proof, see [17].
We say that a polymatroid capacity region is symmetric if
µ(A) = h(|A|) for any A ⊂ F where h : Z+ → R+ is a non-
decreasing function, i.e., µ(A) depends on A only through
|A|. Conversely, it is easy to show that if µ(A) = h(|A|) for
some non-decreasing concave function h : R+ → R+ with
h(0) = 0, then the capacity region is a symmetric polymatroid.

III. RESOURCE ALLOCATION AND PERFORMANCE
ANALYSIS

There are several ways in which the capacity of a file-server
system can be shared among a set of ongoing flows leading to
potentially different user performance. For example, one may
assign a fixed service capacity to each file to be exclusively
shared by ongoing requests for that file. While this simplifies
analysis by decoupling the dynamics across files, it results
in wasted resources and poor performance. A better approach
is to dynamically share service capacity across flow classes
based on their load, e.g., queue lengths capturing the number
of active flows.

Given the queue length x of the system at time t, one
can consider allocating service capacity in various ways. For
example, α-fair rate allocation, introduced in [15], allocates
capacity based on maximizing a concave sum utility function
subject to the systems capacity region. In our setting we can
consider α-fair service rate allocation to flows subject to the
the capacity region C given in Theorem 1. Formally, for any
x, the rate vector r(x) under α-fair allocation is given by

r(x) =

{
arg maxr̂∈C

∑
i∈F

xαi r̂
1−α
i

1−α for α ∈ (0,∞)\{1},
arg maxr̂∈C

∑
i∈F xi log(r̂i) for α = 1.

(1)
Note this generalizes various notions of fairness, e.g., max-

min fair (MMF) and proportional fair (PF) allocations. Indeed
PF and MMF are equivalent to α-fair policy for α = 1
and α → ∞, respectively [15]. However, Theorem 2 below
shows that on polymatroid capacity regions such allocations
are equivalent – we omit proof for lack of space.

Theorem 2. All α-fair rate allocations are equivalent for
polymatroid capacity regions.

Note that while this is clear for a single server system where
α-fair allocations reduce to equal share, it may be at first
sight surprising in the multidimensional setting. Unfortunately,
this does not characterize the performance users would see
in a stochastic system and such results have been quite
limited. What has been shown is that for such allocations,
the performance is sensitive to the distribution of service
requirements [2]. Thus, it is hard to make useful general
claims.

By contrast, the balanced fair (BF) allocations introduced
in [2] are ‘insensitive’, i.e., performance depends on the
service distribution only through its mean. Moreover, BF has
close structural relationship with proportional fairness, see
e.g., [2], [13]. Additionally [1] studies several networks and
shows a remarkable closeness in performance for balanced
and proportional fairness motivating the use of BF as a
mathematical tool for performance evaluation of stochastic
networks under PF allocations.

Let us define BF rate allocation for our file-server system.
Balanced fair rate allocation [2] for a polymatroid capacity
region C can be defined as the service rate allocation r(x),
where for any x,

ri(x) =
Φ(x− ei)

Φ(x)
, ∀i ∈ F (2)

where function Φ, called balance function, is defined recur-
sively as follows: Φ(0) = 1 and Φ(x) = 0, ∀x s.t. xi < 0 for
some i, otherwise,

Φ(x) = max
A⊂F

{∑
i∈A Φ(x− ei)

µ(A)

}
, (3)

where ei is a vector with 1 at ith position and 0 elsewhere.
As shown in [2], Eq. (2) ensures the important property of
insensitivity, while (3) ensures that r(x) for each x lies in



the capacity region, i.e., the constraints
∑
i∈A ri(x) ≤ µ(A)

are satisfied for each A. It also ensures that there exists a
set B ⊂ Ax for which

∑
i∈B ri(x) = µ(B). In fact the BF

allocation is the unique policy satisfying the above properties.
As discussed in [1], [2], under BF allocation and a stability
condition ρ ∈ Interior(C) the stationary distribution for the
queue length process is given by

π(x) =
Φ(x)

G(ρ)

∏
i∈F

ρxi where G(ρ) =
∑
x′

Φ(x′)
∏
i∈F

ρx
′
i .

An allocation of resources is said to be Pareto efficient if
for any state x, there does not exist an r′ ∈ C such that r′i ≥
ri(x), ∀i ∈ Ax with a strict inequality for at least one i ∈ Ax.
Pareto efficiency is a desirable property since it implies that
the resource allocation is less wasteful. BF may not satisfy this
property in general, e.g., see triangle networks studied in [2].
However, Theorem 3 below shows that BF is Pareto efficient
when the capacity region is a polymatroid. For a polymatroid
capacity C, showing Pareto efficiency is equivalent to showing∑
i∈Ax

ri(x) = µ(Ax). A proof of this theorem is provided
in the Appendix.

Theorem 3. For balanced fair rate allocations on polymatroid
capacity regions we have

∑
i∈Ax

ri(x) = µ(Ax) for all x.

A similar result was proved in [3] for the special case of
wireline networks with tree topology – indeed this is a special
case of our result. This result serves as a basis to obtain an
exact expression for the mean delay in our file-server system
under BF rate allocation given by the following theorem. A
proof is provided in the Appendix.

Theorem 4. Consider a file-server system (F, S, µ;S) with
load ρ and under balanced fair resource allocation. The mean
delay for requests/flows of class i is given by

E [Di] =
νi

∂
∂ρi

G(ρ)

G(ρ)
= νi

∂

∂ρi
logG(ρ), (4)

where G(ρ) is given by,

G(ρ) =
∑
A⊂F

GA(ρ), (5)

and where G∅(ρ) = 1 and GA(ρ) can be computed recur-
sively as

GA(ρ) =

∑
i∈A ρiGA\{i}(ρ)

µ(A)−
∑
j∈A ρj

. (6)

Also, ∂
∂ρi

G(ρ) can be recursively computed, without actually
computing derivatives, as follows:

∂

∂ρi
G(ρ) =

∑
A⊂F

∂

∂ρi
GA(ρ), (7)

where ∂
∂ρi

G∅(ρ) = 0, and,

∂

∂ρi
GA(ρ) =

GA(ρ) +GA\{i}(ρ) +
∑
j∈A ρj

∂
∂ρi

GA\{j}(ρ)

µ(A)−
∑
j∈A ρj

,

(8)

if i ∈ A and 0 otherwise.

While the mean delay for systems with polymatroid capacity
can be computed using (4) - (8), exact computation has a
complexity which grows exponentially in the number of files
n. If, however, the capacity region is given by a symmetric
polymatroid and load vector ρ is homogenous, the complexity
can be made linear in n. The following corollary, with proof
sketched in the Appendix, details this result.

Corollary 1. Consider a symmetric file-server system
(F, S, µ;S) with homogenous load ρ and under balanced
fair resource allocation, i.e., for each A ⊂ F , the rank
function µ(A) = h(|A|) for some non-decreasing function
h : Z+ → R+ and for all j ∈ F ρj = ρ = λν. Then,
the mean delay to serve the requests/flows of class i is given
by,

E [Di] =
νF̂ (ρ)

F (ρ)
, (9)

where, F (ρ) and F̂ (ρ) can be recursively obtained as follows:

F (ρ) =

n∑
k=0

Fk(ρ), (10)

where, F0(ρ) = 1, and for k ≥ 1,

Fk(ρ) =
(n− k + 1)ρFk−1(ρ)

h(k)− kρ
. (11)

Also,

F̂ (ρ) =

n∑
k=0

k

n
F̂k(ρ), (12)

where, F̂0(ρ) = 0, and for k ≥ 1,

F̂k(ρ) =
Fk(ρ) + n−k+1

k Fk−1(ρ) + (n−k+1)(k−1)
k ρF̂k−1(ρ)

h(k)− kρ
.

(13)

IV. PERFORMANCE EVALUATION AND COMPARISON

Using the results from previous section, we now develop
an asymptotic result and compare the performance of various
resource allocation policies.

A. Asymptotics for ‘averaged’ RPBF file-server systems

We consider asymptotics for file-server systems wherein
first the number of files n, and then the number of servers
m become large. This serves as an approximation for systems
with a large number of servers, which serve orders of mag-
nitude larger numbers of files, e.g., m ∼ 102 or 103 while
n ∼ 106 or more. We assume the service rate per server is
fixed to ξ and total request rate on the system is mλ, i.e., grows
linearly with m, resulting in a traffic load mρ = mλν where
ν is the mean service requirement per request. Suppose that c
copies of each of the n files are placed independently and uni-
formly across m servers at random without replacement. Let(
F (n), S(m), µ(m,n);S(m,n)

c

)
represent a realization of such

random file-server system. For each realization, the service



capacity is allocated dynamically according to balanced fair
allocations over the associated capacity region, see Sec. III. We
call such a file server systems as one with Random Placement
with BF resource allocation (RPBF).

For a given realization of the random file placement, the
rank function µ(m,n) need not be symmetric. Exact perfor-
mance expressions for such a system would require computa-
tion of the associated capacity region and evaluating the re-
cursions developed in Sec. III both of which have exponential
complexity in n. However, a key insight, we develop below,
is that large RPBF systems exhibit the same performance.

To that end consider the averaged RPBF system having the
“average capacity region”. Let M (m,n)(.) denote the random
rank function associated with an (m,n) RPBF file placement.
Given a set of files A where |A| = k ≤ n one can show that

µ̄(m,n)(A) , E[M (m,n)(A)] = ξm(1− (1− c/m)k).

Indeed the probability that none of the c copies of a file are
stored on a given server is (1 − c/m). Thus the probability
that none of A’ s k files is stored at the server is (1− c/m)k.
So m(1− (1−c/m)k) is the mean number of servers that can
serve at least one file in A, and the above is their associated
service capacity. The averaged capacity region is thus given
by a symmetric polymatroid with rank function µ̄(m,n)(A) =
h(m,n)(|A|) where

h(m,n)(k) , ξm(1− (1− c/m)k) for k = 0, 1, . . . , n.

Below we let π(m,n)(x) denote the stationary distribution
of the queue length process for the average RPBF system,
i.e., using balanced fair allocations over the average capacity
region. Also, let E[D(m,n)] be expected delay for a typical
request in this system. The following result gives a simple
expression for the expected delay in the asymptotic regime
of interest. Its proof is sketched in Appendix. For a detailed
proof, see [17].

Theorem 5. Consider a sequence of (m,n) averaged RPBF
file-server systems with symmetric polymatroid capacity with
the rank function µ̄(m,n)(·) given above and symmetric traffic
load ρ

(m,n)
i = mρ/n for each file i where ρ = λν < ξ.

For given (m,n), let π(m,n)
k =

∑
x:|Ax|=k π

(m,n)(x) for k =
0, 1, 2, . . . , n, and let

α∗ ,
1

c
log

(
1

1− ρ/ξ

)
. (14)

Then, for each ε > 0, we have that

lim
m→∞

lim
n→∞

bα∗m(1+ε)c∑
k=bα∗m(1−ε)c

π
(m,n)
k = 1 (15)

Also, under the same limits, the expected delay is given by

lim
m→∞

lim
n→∞

E[D(m,n)] =
α∗

λ
=

1

λc
log

(
1

1− ρ/ξ

)
. (16)

The intuition underlying this result is as follows. Eq. (15)
indicates that the probability measure π(m,n)(x) concentrates
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Fig. 1. Mean delay comparison of different systems with approximations
for RPBF file-server system in the asymptotic regime: ξ = 1, νi = 1 for
all i ∈ F , ρi = ρm/n for all i ∈ F , and c = 3. Additionally, for finite n
approximation of RPBF, m = 400, n = 2× 106.

on states x such that |Ax| ≈ mα∗ where α∗ is given by
(14). For such states, we should equilibrate the total load to
the system with the service capacity, i.e., for large enough m,
h(m,n)(α∗m) ≈ mρ. Notice that limm→∞

1
mh

(m,n)(α∗) =
ξ(1− e−cα∗). Setting α∗ such that ξ(1− e−cα∗) = ρ recovers
(14). As m,n become large, if the flows in the system are in
states x for which h(m,n)(|Ax|) � ρm or h(m,n)(|Ax|) �
ρm, it will quickly drift towards equilibrated states.

Fig. 1 exhibits plots for mean delay as a function of load for
averaged RPBF systems. One corresponds to a finite system
with (m,n) = (400, 2×106) and computed using Corollary 1
while the other is based on the asymptotic result in Theorem 5.
As can be seen the asymptotic formula is remarkably close.
In next section we discuss why these expressions are good ap-
proximations for the actual performance in RPBF realizations.

B. Approximating performance of RPBF file-server system via
‘averaged’ RPBF.

In this subsection, we argue that the expression for mean
delay given in Theorem 5 based on the averaged RPBF
system can also be used to approximate the performance of
realizations of a large RPBF file server systems.

Recall that M (m,n)(.) denotes the random rank function
for our (m,n) RPBF system, and µ̄(m,n)(.) its mean over
all random file placements. Below we provide an informal
argument to show that, with high probability, the following is
true for most sets A of size αm:

1

m
M (m,n)(A) ≈ 1

m
µ̄(m,n)(A) =

1

m
h(m,n)(αm)

This further suggests via Theorem 5 that asymptotically, even
for asymmetric RPBF systems, concentration will once again
happen at α∗m such that 1

mh
(m,n)(α∗m) ≈ ρ.

Recall that M (m,n)(A) = ξ
∑
s∈S(m) 1{

s∈S(m,n)
c (A)

},

where S(m) and S
(m,n)
c (A) are respectively the set of m

servers, and the (random) set of servers where a copy of
at least one of the files in A is stored. Suppose, for each
(m,n), a subset of files A

(m,n)
α is selected uniformly at

random amongst all A ⊂ F (n) such that |A| = bαmc.



Suppose S(m) = {s1, s2, . . . , sm}. Consider a random process
X(m,n) =

(
X

(m,n)
1 , X

(m,n)
2 , . . . , X

(m,n)
m

)
where

X
(m,n)
i = 1{

si∈S(m,n)
c

(
A

(m,n)
α

)}, ∀i ≤ m
Then, M (m,n)

(
A

(m,n)
α

)
= ξ

∑m
i=1X

(m,n)
i . We now study

limm→∞ limn→∞
1
mM

(m,n)
(
A

(m,n)
α

)
.

It can be checked that for each n, X(m,n) is a pro-
cess of m exchangeable Bernoulli

(
1− (1− c/m)bαmc

)
ran-

dom variables, and so is X(m,∞) , limn→∞X(m,n).
Also, for any fixed set of l servers, say {s1, s2, . . . , sl},
X

(m,∞)
i for i ∈ {1, 2, . . . , l} become independent in the

limit as m → ∞. As was shown in [19], such asymp-
totic independence implies a law of large numbers to hold
for a sequence of exchangeable random processes, which
for our case implies that limm→∞

1
m

∑m
i=1X

(m,∞)
i =

limm→∞E[X
(m,∞)
1 ] = 1 − e−αc in probability. Thus, with

high probability, 1
mM

(m,n)
(
A

(m,n)
α

)
≈ 1

mh
(m,n)(αm) for

almost all sets A of size αm, showing our claim. Also, in [17]
we numerically check goodness of the approximation of mean
delay using an ‘averaged’ polymatroid capacity for a file-
server system with m = 4 and n = 6, and find that the
performance of the exact and averaged systems are remarkably
close.

C. Performance Comparisons

We now compare the performance of RPBF file-server
system with several alternatives.
Random Placement with Random Routing (RPRR): Files
are stored uniformly at random as in RPBF. However, upon
arrival, a request for a given file is randomly routed to one of
the c servers that has the file. Thus, each request is served by
a single server, i.e., there is no pooling. As n→∞, the total
load of ρm gets balanced across m servers and the system
is equivalent to m independent M/GI/1 processor sharing
systems with load ρ and service rate ξ.
Random Placement with Least loaded Routing (RPLR):
Files are stored uniformly at random. Upon arrival, requests
are routed to the server with least number of ongoing jobs
among c servers that store the corresponding file. In the limit
as n → ∞, the load corresponding to each file tends to 0
and assigning c servers to each file at random beforehand
is equivalent to assigning c servers to requests upon arrival.
Thus, the allocation policy of this system is equivalent to the
super-market model studied in [4], [14], [20] where upon each
arrival, c servers are chosen at random and the request is
assigned to the least loaded. As m → ∞, for exponential
service requirements one can show the mean delay is given
by

E[DRPLR] =
1

λ

∞∑
k=1

(ρ/ξ)
ck−1
c−1 . (17)

Non-overlapping Pools with Fixed Routing (NPFR): The
system’s m servers are divided into m/c groups, each of size

c. Each server group stores a mutually exclusive subset with
nc/m files. Within a server group, all servers store the same
files. Each ongoing file request is served by all the servers
in the corresponding group. This system is thus equivalent
to m/c independent M/GI/1 queues with load ρ and service
rate ξc. Under the processor sharing discipline, the mean delay
for this system is given by

E[DNPFR] =
ν

cξ(1− ρ/ξ)
. (18)

Contrast this with Theorem 5 where the mean delay increase
is logarithmic in 1/(1− ρ/ξ).

In Fig. 1, we compare the performance of these three
systems with RPBF. RPBF’s performance is plotted using
the approximations developed in the previous subsection. As
expected, RPRR performs poorly as it does not exploit pooling
or load dependent routing. RPLR and NPFR outperform each
other in different regimes. NPFR performs better at lower
loads where pooling works to its advantage. However, RPLR
benefits from load balancing due to randomized storage as
well as dynamic load balancing due to least loaded routing.
As a result, it performs better at higher loads.

RPBF outperforms all these systems. Its performance im-
proves by a factor of 2 over supermarket model (i.e., RPLR as
n→∞) even at higher loads for c = 3. For larger values of c,
the improvements are even greater. For example, for c = 5, the
mean delay improves by a factor of up to 3. This is surprising
since RPLR already enjoys the benefits of flow level load
balancing. Also, at higher loads, one might expect that the
gains of RPBF over RPLR due to pooling may be limited
since load balancing in RPLR would ensure that most of the
servers are busy serving requests for most of the time and are
thus well utilized. The significant performance improvements
of RRBF shows that the fairness based resource allocation is
worthwhile to optimize performance in file-server systems.

V. SYSTEM TRADEOFFS

A. Recovery costs on correlated failure v/s Performance

We consider the cost of recovering files when there are
large-scale correlated failures such as those occurring after
power outages, see [5] for extensive discussion. It is not
uncommon in datacenters that about 1% of servers fail to
reboot after a power outage. The system then needs to recover
data in these servers by retrieving copies from the servers that
successfully rebooted. However, there might be some files for
which no copy exists in the datacenter due to the failure of
all servers in which it was stored. The probability of such an
event occurring can be significant especially when the total
number of files in the system is large.

When this occurs the system needs to locate and recover
the lost files from a cold storage. Recovery of the files from
cold storage may incur a high fixed cost but may not be greatly
affected by the number of files lost. Thus in practice (as argued
in [5]) it is desirable that the probability that one or more
files are lost during power outage events be low. This can be
achieved by constraining randomness in how files are copied
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Fig. 2. Delay v/s reliability n = 2 × 106, m = 400, c = 3, γ = 0.01,
ρ = 0.7, and ν = 1.

across servers. The intuition from Section IV suggests that
randomly ‘spreading’ the files across all the servers so that
their pools overlap improves the user perceived performance.
However, this may increase the probability of a file loss.
To study how these quantities are related, consider a storage
policy that divides m servers into independent pools of smaller
size and restricts the copies of each file to be placed within a
single pool, as follows.

Fix an integer κ such that c ≤ κ ≤ m. Suppose, for now,
that number of servers m is divisible by κ and that number
of files n is divisible by m/κ. Divide the set S of m servers
into m/κ number of pools each of size κ. Similarly, divide
the set F of n files into disjoint m/κ groups of size nκ/m.
Associate each group of files with a distinct pool of servers.
Then, for each file, independently store c copies by selecting
c servers uniformly at random from the corresponding pool.

Suppose that upon a power outage, each server fails to
reboot with probability γ independently. Then, for a pool of
size κ, the probability that l servers fail is

(
κ
l

)
γl(1 − γ)κ−l,

so the probability that one or more files are lost can be given
by

Ploss = 1−

(
c−1∑
l=0

(
κ

l

)
γl(1− γ)κ−l

+

κ∑
l=c

(
κ

l

)
γl(1− γ)κ−l

(
1−

(
l
c

)(
κ
c

))nκ/m)m/κ
For the general case where m is not divisible by κ or n is

not divisible by m/κ, we can create non uniform pools and
compute the corresponding loss probability. We use the above
expression as a simpler approximation by using bm/κc and
bnκ/mc appropriately. Also, the performance within each pool
can be computed using the expression of Corollary 1, which
gives a reasonable approximation as explained in Sec. IV.

Fig. 2 plots mean delay and Ploss for γ = 0.01 for a system
with n = 2 × 106, m = 400, and c = 3 copies. The load
per server is ρ = 0.7, i.e., the total load on the system is
mρ = 280 and is distributed uniformly across files. Also,
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Fig. 3. Energy-delay tradeoff with varying server speed ξ for asymptotic
regime where m→∞: load per server fixed at ρ = 0.8, ν = 1, and c = 3.

νi = 1 for all i ∈ F and µs = 1 for all s ∈ S. As can be seen,
varying κ trades off performance with file loss probability.
As κ increases mean delay decreases but quickly saturates at
0.57, which matches with the asymptotic limit as given by
Theorem 5. At κ = 14, mean delay is 0.64 which is about
12% greater than the asymptotic value, while Ploss is less than
1%. Decreasing κ can further lower Ploss but at the cost of a
significant increase in mean delay.

B. Energy-Delay tradeoffs

Next, we consider RPBF systems where servers’ processing
speed is a bottleneck. The processing speed can be improved
by increasing clock frequency and voltage supply, which
in turn increases energy consumption. This dependence is
typically modeled through a polynomial relationship of power
with ξ, i.e., when the service rate of a server is ξ, the power
consumption is f(ξ) = ξα/β per unit time where α > 1
and β is a positive constant [12]. In practice, even when ξ is
set to 0, there is non-negligible leakage power consumption.
Since our focus is on dynamic power, we ignore leakage
power here. The choice of ξ trades off performance for energy
consumption. Here, we consider a simple semi-static policy
where each server operates at a fixed rate ξ when busy and
rate 0 when idle, thus consuming negligible power when idle.
For M/GI/1 queues, it was shown in [12] that such a simple
policy, with ξ chosen judiciously, is close to an optimal policy
for minimizing a weighted average of mean delay and energy
consumption across all dynamic policies where ξ is allowed
to vary with queue state.

Fig. 3 compares the energy-performance tradeoff for NPFR,
RPLR, and RPBF where the plots are obtained by varying
values of ξ. For RRBF, Theorem 5 is used to compute
dependence of performance on ξ, whereas for NPFR and
RPLR, (18) and (17), respectively, are used. Also, we assume
that the power consumption as a function of ξ is given by
f(ξ) = ξ2. Since the fraction of time a server is busy in
each system is ρ/ξ, the mean energy consumption is given by
E = ρξ. To obtain performance of 0.5 for ρ = 0.8, the energy
consumption for NPFR and RPLR systems is 20% and 70%



more than that for RPBF, respectively.

VI. CONCLUSIONS

In this paper, we propose a simple model to quantify design
tradeoffs associated with large scale CDNs leveraging dynamic
service allocation accross shared server/network resources.
The benefits of doing so are significant, thus it is not surprising
that current CDNs are moving in this direction increasingly
incorporating such P2P like service models. Our work repre-
sents a first step towards developing the performance models
needed for a disciplined engineering and optimization of such
systems.
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APPENDIX

A. Sketch of proof of Theorem 1

We first show that µ is a rank function. By definition it is
clear that µ(∅) = 0 and that µ is monotonic. To show that
µ(.) is submodular we use the inclusion-exclusion principle
to obtain

µ(A) =
∑

s∈S(A)

µs =
∑

s∈S(A∩B)∪S(A\B)

µs

=
∑

s∈S(A∩B)

µs +
∑

s∈S(A\B)

µs −
∑

s∈S(A∩B)∩S(A\B)

µs.

Similarly, one can obtain µ(B), µ(A∪B), and µ(A∩B), and
show that µ(A) + µ(B)− µ(A ∪ B)− µ(A ∩ B) ≥ 0 which
shows that µ is submodular.

We then show that C is the capacity region. We show that
each r ∈ C is feasible by giving an achievability scheme
for each extreme point of the dominant face D = {r ∈ C :∑
i∈F ri = µ(F )} without violating Assumption 1.

B. Proof of Theorem 3

We prove this by induction on |x| ,
∑
i xi. Clearly, the

result is true when |x| = 1. Lets assume that the claim is true
for all x′ such that |x′| < |x| for a given x. We show that it
holds for x as well.

By definition of balanced fairness, i.e., by (2) and (3),
there exists a B such that

∑
i∈B ri(x) = µ(B). Also, by

monotonicity of µ(.), B ⊂ Ax. If B = Ax, then we are done.
Suppose this is not the case. Then, from (2) and definition of
B, we have

Φ(x) =

∑
i∈B Φ(x− ei)

µ(B)
. (19)

Since the capacity condition
∑
i∈B ri(x

′) ≤ µ(B) is
satisfied for all states, we have

∑
i∈B ri(x − ej) ≤ µ(B)

for all j ∈ Ax\B. Using this in (19), we get

Φ(x) ≤
∑
i∈B Φ(x− ei)∑
i∈B ri(x− ej)

, ∀j ∈ Ax\B. (20)

We now use this bound to compute one on the sum of all rates
as follows:

∑
i∈Ax

ri(x) =
∑
i∈B

ri(x) +
∑

j∈Ax\B

rj(x),

= µ(B) +
∑

j∈Ax\B

Φ(x− ej)

Φ(x)
,

≥ µ(B) +
∑

j∈Ax\B

∑
i∈B ri(x− ej)Φ(x− ej)∑

i∈B Φ(x− ei)
,

= µ(B) +
∑

j∈Ax\B

∑
i∈B Φ(x− ej − ei)∑

i∈B Φ(x− ei)
,



= µ(B) +

∑
i∈B

∑
j∈Ax\B Φ(x− ej − ei)∑
i∈B Φ(x− ei)

,

≥ µ(B) +

∑
j∈Ax\B Φ(x− ej − ei∗)

Φ(x− ei∗)
, (21)

where i∗ = arg mini∈B

{∑
j∈Ax\B Φ(x−ej−ei)

Φ(x−ei)

}
. In the last

inequality (21), we have used the identity a+b
c+d ≥

a
c if a

c ≤
b
d .

Thus, we get the following inequality.

∑
i∈Ax

ri(x) ≥ µ(B) +
∑

j∈Ax\B

rj(x− ei∗). (22)

We now only need to show µ(B) +
∑
j∈Ax\B rj(x− ei∗) ≥

µ(Ax). The following two cases are possible for the given x.
Case 1 xi∗ = 1 : Then, in state x − ei∗ , only classes in

Ax\{i∗} are active. Thus, we have,∑
j∈Ax\B

rj(x− ei∗) + µ(B)

= µ(Ax\{i∗})−
∑

k∈B\{i∗}

rk(x− ei∗) + µ(B),

≥ µ(Ax\{i∗})− µ(B\{i∗}) + µ(B),

≥ µ(Ax),

where the equality follows from induction hypothesis, the first
inequality follows from the capacity constraint on set B\{i∗},
and the last inequality follows from the submodularity of µ(.).

Case 2 xi∗ > 1 : Here, all the classes in Ax are active in
state x− ei∗ as well, i.e., Ax = Ax−ei∗ . Thus, we have,∑

j∈Ax\B

rj(x− ei∗) + µ(B) ≥
∑
i∈Ax

ri(x− ei∗)

= µ(Ax),

where the inequality follows from the capacity constraint on
set B, and the equality follows from induction hypothesis.
Thus, the result holds for both the cases.

C. Proof of Theorem 4

By Little’s law,

E [Di] =

∑
x xiπ(x)

λi
=
νi

∂
∂ρi

G(ρ)

G(ρ)
. (23)

Thus, to prove the result we only need to show (5).
Equation (7) follows by taking derivative of (5) w.r.t. ρi. From
Theorem 3 and (3) we have,

Φ(x) =

∑
i∈Ax

Φ(x− ei)

µ(Ax)
. (24)

Let GA(ρ) =
∑

x:Ax=A Φ(x)
∏
i∈F ρ

xi . Thus, we get ,
G(ρ) =

∑
A⊂F GA(ρ) and

GA(ρ) =
∑

x:Ax=A

∑
i∈A Φ(x− ei)

µ(A)

∏
j∈F

ρxj ,

=

∑
i∈A

∑
x:Ax=A Φ(x− ei)

∏
j∈F ρ

xj

µ(A)
,

Rearranging terms, we get,

µ(A)GA(ρ) =
∑
i∈A

ρi
∑

x:Ax=A\{i}

Φ(x)
∏
j∈F

ρxj

+
∑
i∈A

ρi
∑

x:Ax=A

Φ(x)
∏
j∈F

ρxj ,

=
∑
i∈A

ρiGA\{i}(ρ) +GA(ρ)
∑
i∈A

ρi,

further simplification of which gives the desired result.

D. Sketch of proof of Corollary 1
From symmetry it follows that GA(ρ) depends on A

only through |A|. Then, eqns. (10) - (13) follow by let-
ting Fk(ρ) =

∑
B:|B|=kGB(ρ) which equals

(
n
k

)
GA(ρ) for

some A such that |A| = k, and similarly letting F̂k(ρ) =∑
B:|B|=k

∂
∂ρi

GB(ρ) which equals
(
n−1
k−1

)
∂
∂ρi

GA(ρ) for some
A such that |A| = k and i ∈ A, and further simplification.

E. Sketch of proof of Theorem 5
We first prove the following lemma by finding an ex-

plicit expression for π(m,n)
k for each k for given m and n

and then taking the limit as n → ∞ for a fixed m. Let
limn→∞ π

(m,n)
k = π

(m,∞)
k . Also let h(m,∞)(k) = ξm(1 −

(1− c/m)k) for k = 0, 1, 2, . . . ,∞.

Lemma 1. For any fixed integers k1 and k2 such that k1 > k2,
we have

π
(m,∞)
k1

π
(m,∞)
k2

=
(mρ)k1−k2∏k1

l=k2+1 h
(m,∞)(l)

(25)

Proof: Fix m and n. From definitions of Fk(.) from the
proof of Corollary 1 one can show that π(m,n)

k = Fk(mρ/n)
F (mρ/n)

for k = 1, . . . , n where Fk(mρ/n) and F (mρ/n) are given
by recursive expressions in the statement of Corollary 1. Thus,
from (11), we get π(m,n)

0 = 1/F (mρ/n) and

π
(m,n)
k =

(n− k + 1)mρn π
(m,n)
k−1

h(m,n)(k)− kmρn
, for k = 1, . . . , n.

Thus, for any k1 > k2 we get

π
(m,n)
k1

π
(m,n)
k2

=
(n− k2)!(mρn )k1−k2

(n− k1)!
∏k1
l=k2+1(h(m,n)(l)− lmρn )

−→
n→∞

(mρ)k1−k2∏k1
l=k2+1 h

(m,∞)(l)

Now, for any α > 0, we have

lim
m→∞

1

m
h(m,∞)(bαmc) = ξ(1− e−αc).

Let k′m be the largest k such that h(m,∞)(k) ≤ mρ. Thus, it is
easy to show that k′m/m→ α∗ as m→∞ where α∗ is given
by (14). Further, we show that tail of the measure π

(m,∞)
k

is lighter than geometric distribution for a given m. We also
show that for any ε > 0, for any k such that k < (1− 2ε)k′m
or k > (1 + 2ε)k′m, π(m,∞)

k decreases to 0 geometrically fast
as m→∞, from which the result follows.


