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Abstract—We consider in-network computation of an arbitrary
function over an arbitrary communication network. A network
with capacity constraints on the links is given. Some nodes in
the network generate data, e.g., like sensor nodes in a sensor
network. An arbitrary function of this distributed data is to
be obtained at a terminal node. The structure of the function
is described by a given computation schema, which in turn
is represented by a directed tree. We design computing and
communicating schemes to obtain the function at the terminal
at the maximum rate. For this, we formulate linear programs to
determine network flows that maximize the computation rate. We
then develop a fast combinatorial primal-dual algorithm to obtain
near-optimal solutions to these linear programs. As a subroutine
for this, we develop an algorithm for finding the minimum cost
embedding of a tree in a network with any given set of link
costs. We then briefly describe extensions of our techniques to the
cases of multiple terminals wanting different functions, multiple
computation schemas for a function, computation with a given
desired precision, and to networks with energy constraints at
nodes.

Index Terms—Function computation; generalized flow conser-
vation; fractional packing; graph embedding.

I. INTRODUCTION

MOTIVATED by sensor network applications, there is
significant interest in computing functions of dis-

tributed data inside a network. A typical scenario that is
considered is the following. Sensor nodes that can make mea-
surements of their environment, perform reasonable amounts
of computation, and communicate with other nodes, are dis-
tributed in a sensor field. The interest of the sensor network
is not so much in the measurement values obtained by the
sensors but in some function of these values, say Θ. Some
rather simple examples of Θ are the sum, maximum, minimum
(or more generally a percentile), sample mean (or more
generally sample moments). A more sophisticated example
is the Fourier transform of the data. Since the nodes in the
network can perform computation, they could participate in the
computation of Θ. Thus the interest is in in-network function
computation, or more expansively, in distributed computation
of a function of distributed data. We want to study the limit
on the computation rate imposed by the network parameters
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and not by the source data rates; hence we assume that
the entire infinite data sequences are readily available at the
respective sources at any time. In this paper, we introduce
novel network flow techniques to design a computation and
communication scheme that maximizes the rate at which Θ is
computed. Though network flow techniques have been used
widely to study multiple unicast problems (see e.g., [1]–
[4]), our work develops such techniques for the first time for
function computation.

Early work on in-network computation has been on the
asymptotic analysis of the number of transmissions needed to
compute specific functions in noisy broadcast networks, e.g.,
[5]–[7]. Recently, a significant body of work has emerged in
which the node locations are assumed to be from a realization
of a suitable random point process and nodes can communicate
over a shorter distance and not over the entire field. The
resulting communication graph of the network is thus a
random graph. In this setting a probabilistic characterization of
the asymptotic (in the number of nodes) computation rate for
different classes of functions, e.g., ‘type-threshold functions’
and ‘type sensitive functions’ [8], have been obtained, e.g.,
[8]–[11].

Another class of work considers simpler networks with a
small number of correlated sources [12]–[16]. Much of this
work takes the information theoretic perspective in which
the objective is to find encoding rate regions for reliably
communicating the desired function. Yet another approach
to function computing is the recent work in network coding
literature [17]–[19]. Here larger and more complex networks
with independent sources are considered. However, designing
optimal coding schemes and finding capacity is a difficult
problem except for very special functions or networks, e.g.,
[17], [18].

In this paper we make a significant departure from the
above. We consider arbitrary computable functions of the
distributed data for which a computation schema is described
by a directed tree. A computation schema defines a sequence
of operations to compute the function. An arbitrary capacitated
communication network—each link having a capacity—is also
assumed given. The function Θ for each element of the
sequence of data is to be computed over the network using
the schema at the highest rate possible in the network. In
this paper we develop and analyze algorithms that determines
the communication and computation sequence in the network
to compute Θ at the highest possible rate. In our setup,
we assume unbounded memory and computational power at
each node. Our algorithms and protocols require a memory-
size and computational power that depend on the sizes of the
network and the computation tree. We also do not assume
any latency requirement on the computation. Even so, the
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computational delay at nodes are not directly relevant under
the preceding assumptions because handling such delays only
requires additional buffer at the nodes to sychronize incoming
data.
Our techniques are applicable to networks with directed

links, networks with undirected links, and networks with
both directed and undirected links with capacity constraints;
however, we present our results only for networks with
undirected links. We also restrict to wireline networks for
explaining our work even though some of our techniques
can be adapted to work in standard wireless network models.
Our work has significant relation to the well-studied problem
of fractional Steiner-tree packing which provides a solution
to the routing multicast problem—finding the best multicast
rate under routing [20]. The exact relation is explained in
Extension 1 in Section V. There are some similarities of our
work with that of graph embedding, e.g., [1], [21], [22] but
there are significant differences in the modeling assumptions
and in the embedding objectives. Such work on embedding
typically assume the target network to be a ‘regular network’
like a hypercube or a mesh and all link capacities are assumed
equal. In a subsequent work [23], it is shown that computation
in a network without block coding, as is the focus of this
paper, is near-optimal for a wide class of function computation
problems.

A. An Example and Motivation

Let us consider the function Θ(X1, X2, X3) = X1 ·X2+X3

of three variables X1, X2, and X3, generated at three sources
s1, s2, and s3 respectively. A terminal node t is required
to obtain the function Θ(X1, X2, X3). We assume that all
the three data symbols are from the same alphabet A, and
multiplication (·) and addition (+) operations result in a
symbol in the same alphabet. The computation of the function
can be broken into two parts—first compute (X1 · X2) and
then add X3 to the product. These two operations can be
done at different nodes in the network in the above order.
This decomposition of the computation can be represented by
the graph shown in Fig. 1(a). Such a graphical representation
of the computation will henceforth be called a computation
tree. Note that such a decomposition into sub-computations is
used while computing even in a single sequential computer.
Clearly, each edge of the computation tree represents a unique
function of the source symbols corresponding to its ancestor
source nodes, e.g., edge corresponding to X1 ·X2 represents a
function of the symbols generated at the ancestor sources s1
and s2.
Now consider computing Θ(X1, X2, X3) in the network

shown in Fig. 1(b) where each edge has unit capacity. There
are multiple ways of receiving this function at the terminal
t and they depend on what computations are performed at
which nodes and also the paths chosen for the data flows.
Two such ways of computing this function are shown in
Figs. 1(c) and 1(d). Each of these graphs show the nodes at
which each sub-computation would be performed and also the
path along which each source-data or computed data would
flow. Equivalently, it associates (1) a network node with each
node in the computation tree, and (2) a directed path in the

network with each edge in the computation tree. We call such
a directed graph representing a possible way of computing
the function according to the computation tree in the given
network as an embedding. An embedding of the computation
tree in a network is formally defined in Section II. Clearly, an
intelligent time-sharing between the various embeddings may
give a higher number of computations of Θ per use of the
network, on average, than when only one such embedding
is used. This raises the natural question: how to allocate
the timeshare for every possible embedding to achieve the
maximum rate at which Θ can computed in a given network?
In this paper, we address this question.
Time-sharing is a standard technique in information theory,

and is implicit in the standard packing formumation in multi-
commodity flow problems. In multi-commodity problems,
different paths are time-shared for a given flow to maximize
the total flow under the capacity constraints of the links. In
our computation problem, since a computation is performed
over an embedding, it is natural to time-share between such
embeddings. However, in contrast to multi-commodity flow
problems, in our setup different data-flows from a particular
realization need to be synchronized so that the computations
are restricted to data of the same realization. This synchro-
nization requires careful design of a scheduling protocol. One
way of doing this is explained in Appendix B.

B. Organization and Summary of Contributions

We begin by describing the model and definitions in detail
in the next section. Sections III and IV present the main
contributions of this paper. In Section III, we first present a
‘natural’ linear program (LP), Embedding-Edge-LP, that, as
stated in Theorem 1, optimally allocates flows for each of the
embeddings and achieves the maximum rate possible under
our setup. We will see that this LP has exponential complex-
ity in terms of the network parameters. We then present a
second LP, called Node-Arc-LP,, which is based on a suitably
defined flow conservation principle. This LP outputs a set of
‘consistent’ link flows and it can be solved in polynomial time
and space. However, its solution does not directly tell us the
timeshare for the embeddings, and thus does not directly give
a routing-computation scheme. Such a timeshare of the em-
beddings is obtained by an algorithm Extract-Embeddings that
converts the flow rates obtained from Node-Arc-LP into a flow
allocation on the embeddings. Thus Node-Arc-LP and Extract-
Embeddings together provides a solution to Embedding-Edge-
LP . We show that this algorithm also has polynomial time
and space complexity. In Section IV, we present FANO (FAst
Near-Optimal algorithm), a fast primal-dual algorithm which,
for a given ε > 0, finds a solution to achieve at least (1− ε)
fraction of the optimal rate of computation. We call such a
solution an (1 − ε)-optimal solution. This algorithm uses an
oracle subroutine which finds a minimum cost embedding of
the computation tree in the network. We provide an efficient
algorithm, Min-Cost-Embedding, to obtain the same. This
algorithm is also of independent interest. In Section IV-A,
we discuss the distributed implementation of our near-optimal
algorithm. Appendix A gives a proof of Theorem 1. Once we
know an optimal timeshare of different embeddings, we need
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to convert the allocation into a usable schedule of computation
at the nodes and communication along the edges. A procedure
to derive this schedule from the timeshare allocations is given
in Appendix B.
Four interesting extensions of our results are presented in

Section V. First, we allow multiple computing schema for
computing the same function. Then we consider multiple
terminals computing distinct functions of disjoint sets of
sources. For this problem, we show how we can modify
our techniques to maximize either the weighted sum-rate of
computations, or maximize the rate-vector in a given direction
to compute the rate-vectors at the boundary of the rate-region.
In the third extension, we consider the problem of computing
a function with a desired precision which is achieved by
allowing possibly different precision for each type of data.
In the fourth extension, we consider a network with energy-
constrained nodes, and assume that each type of data, i.e.,
each edge of the computation tree, requires some fixed but
different amount of energy to compute/generate, transmit, and
receive.

II. THE MODEL, NOTATION, AND DEFINITIONS

The communication network is an undirected, simple, con-
nected graph N = (V,E) where V is a set of n nodes and E
is a set of m undirected edges. Each edge e ∈ E represents
a half duplex link with a total non-negative capacity c(e).
Whenever we need to refer to the incident nodes, say u and
v, the edge between u and v will be called (u, v) or uv. This
notation will also be specially used to denote an edge when
communication in a specific direction (from u to v) is to be
indicated.
In the network N , S = {s1, s2, . . . , sκ} ⊂ V is the set

of κ source nodes, and t is the terminal node. Source si
has an infinite sequence of data values {Xi(k)}k≥0 where
Xi(k) belongs to a finite alphabet A. The link capacities
are expressed in an |A|-ary unit. Xi is used to denote a

representative element of the sequence. Let X
�
= [X1, . . . Xκ],

and its n-th realization X(n)
�
= [X1(n), . . . , Xκ(n)]. Without

loss of generality, we assume that each source node in the
network generates exactly one data sequence; if a source
node generates two or more data sequences then this can be
represented by multiple source nodes connected by infinite
capacity links. We also assume that there is only one terminal
node. For any positive integer l, we denote {1, 2, · · · , l} by
[1, l].
A given function Θ : Aκ → A of X needs to be

obtained at the terminal node t for each k at the highest
possible rate. A computation schema for Θ is given and is
represented by a directed tree G = (Ω,Γ) where Ω is the set
of nodes and Γ is the set of edges. The elements of Ω are
labelled μ1, μ2, . . . , μ|Ω| where μ1, μ2, . . . , μκ are the source
nodes, μ|Ω| is the terminal node that obtains Θ and the rest
are computing nodes that compute different functions of X.
Further, the nodes in Ω are labeled according to a topological
order such that for i > j there is no directed path in G from
node μi to node μj . The source nodes have in-degree zero
and out-degree one and the terminal node has in-degree one
and out-degree zero. All other nodes have in-degree greater

than one and out-degree exactly one. (An out-degree of greater
than one will result in a directed acyclic graph (DAG), which
is outside the scope of this work.) The elements of Γ are
labelled θ1, θ2, . . . , θ|Γ| with θ1, θ2, . . . , θκ being the outgoing
edges from μ1, μ2, . . . , μκ respectively, and θ|Γ| = Θ being
the incoming edge into μ|Ω|. The remaining edges are labeled
according to a topological order, i.e., for any i < j, there is
no path from the head node of edge θj to the tail node of
edge θi. The nodes and edges of G can be labeled as above
in O(|Γ|) = O(κ) time.
For any edge θ ∈ Γ, let tail(θ) and head(θ) represent,

respectively, the tail and the head nodes of edge θ. Let Φ↑(θ)
and Φ↓(θ) denote, respectively, the immediate predecessors
and the immediate successors of θ, i.e.,

Φ↑(θ)
�
= {η ∈ Γ|head(η) = tail(θ)} and

Φ↓(θ)
�
= {η ∈ Γ|tail(η) = head(θ)}.

Each edge θ of G represents a unique function ofX that can
be computed from the functions corresponding to the edges
in Φ↑(θ). Further, each function takes values from the same
alphabet A. Throughout this paper, except in the extension on
DAG computation schema in Sec. V, Φ↓(θ) contains exactly
one edge if θ �= θ|Γ|. For θ = θ|Γ|, it is always true that
Φ↓(θ|Γ|) = ∅.
Remark 1: Each intermediate function of X taking values

from the same alphabet is not unreasonable even when all
the computations are over real numbers because computations
are performed using a fixed precision. However, it may be
reasonable in some applications to use different precision for
different intermediate functions (edges of G). This can be
handled in a simple manner in our setup, and is explained
in an extension presented in Section V.
All computations at any node of the network are restricted

to conform to the given computation tree in the following
sense. Any node in the network is allowed to compute only
the functions represented by the edges of G. A node computing
a function θ of any realization of the data symbolsX(n) must
do so by using the functions Φ↑(θ) of X(n).

Let ℵ(v) �
= {u ∈ V |uv ∈ E} denote the set of neighbors

of a node v ∈ V and let ℵ′(v)
�
= ℵ(v) ∪ {v} be the

set of neighbors of v including itself. A sequence of nodes
v1, v2, · · · , vl, l ≥ 1, is called a path if vivi+1 ∈ E for
i = 1, 2, . . . , l − 1. and vi �= vj for 1 ≤ i < j ≤ l. Note
that according to our definition, a single node also qualifies
as a path. Also, our paths are directed. The set of all paths in
N is denoted by P . With usual abuse of notation, for such a
path P , we will say vi ∈ P and also vivi+1 ∈ P. The nodes
v1 and vl are called, respectively, the start node and the end
node of P, and are denoted as start(P ) and end(P ).
As discussed in Section I, a function with a given compu-

tation tree can be computed along any “embedding” of the
tree in the network as shown in Fig. 1. We are now ready to
formally define an embedding of a computation tree.

Definition 1: An embedding is a mapping B : Γ → P such
that
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Fig. 1. Computing Θ = X1X2+X3 over a network. (a) A schema to compute Θ. (b) A network to compute Θ = X1X2+X3. (c) A possible embedding
that computes Θ. (d) An alternative embedding.

1) start(B(θl)) = sl for l = 1, 2, . . . , κ
2) end(B(η)) = start(B(θ)) if η ∈ Φ↑(θ)
3) end(B(θ|Γ|)) = t.
Note that, an embedding B maps every edge θl of the

computation tree to a directed path B(θl) in the network. The
image is a directed path even if the network is undirected. The
path B(θl) in N carries the data θl, the node start(B(θl))
generates or computes the data θl, and the node end(B(θl))
uses θl to compute some other function or, if l = |Γ| then,
simply receives it. In the special case when B(θl) is a single
node (which, by our definition, is a path as well), that node
generates/computes θl but does not forward it to other links. It
uses θl to compute some other function (specifically Φ↓(θl))
or, if l = |Γ| then, simply receives it.
Example 1: (i) For the embedding shown in Fig. 1(c),

B(X1) = s1uw, B(X2) = s2vw, B(X3) = s3xw,
B(X1X2) = w, and B(X1X2 +X3) = wt.
(ii) For the embedding shown in Fig. 1(d), B(X1) = s1uw,

B(X2) = s2vw, B(X3) = s3xt, B(X1X2) = wt, and
B(X1X2 +X3) = t.
It is worth noting that, a computation tree, and thus its

embeddings, ignores the operations represented by its nodes.
Thus the same computation tree may represent computation
of different functions by changing the operations represented
by its nodes. For example, Fig. 1(a) is also a computation tree
for the function Θ = (X1 +X2)X3, or Θ = (X1 +X2)/X3,
or many such other functions. In fact, all our subsequent
developments depend only on the computation tree, and not
on the particular function.
We denote the set of embeddings of G in N by B. Our aim

is to determine the flow on each of these embeddings so as
to maximize the total flow. An edge in the network may carry
different functions of the source data in an embedding. We
thus define the number of times an edge e ∈ E is used in an
embedding B as rB(e) = |{θ ∈ Γ|e is a part of B(θ)}|.
Example 2: Fig. 2(a) shows a computation tree, which

represents the natural sequence of operations involved in the
computation of functions like Θ = (X1X2+X3)X4. Fig. 2(b)
shows an undirected network where s1t has capacity 2 and all
the other edges have capacity 1. In this network, clearly an
efficient embedding, which achieves a computation rate of 1,
is (as shown in Fig. 2(c)) B(X1) = s1ts2, B(X2) = s2,
B(X3) = s3, B(X4) = s4, B(X1X2) = s2s3, B(X1X2 +

X3) = s3s4, and B(Θ) = s4s1t. In this embedding, the edge
s1t is used twice–once in B(X1) and once in B(Θ).
An edge may also be used to carry flows on different

embeddings. Therefore in an assignment of flows on different
embeddings, i.e., in a particular timesharing scheme, the edge
may carry multiple types of data (i.e., different functions of
X) of different amounts. Also note that, if start(B(θi)) =
end(B(θi)), i.e., if B(θi) consists of a single node, then in
that embedding the data θi is generated as well as used (i.e.,
not forwarded to another node) in that node.
Recall that we restrict the computations in the network to

be as dictated by the given computation tree. In an embedding,
some particular network nodes play the roles of the nodes of
the computation tree, and the function θ flows along the path
B(θ). Since different realizations of data are never ‘mixed’
in the network, if one traces one realization of data (and
their functions) in the network, it must clearly flow on an
embedding of the computation tree. However, different em-
beddings may be used for different realizations. This flexibility
allows the time-sharing of the embeddings to achieve a better
computation rate under capacity constraints of the edges. In
the following, we describe our transmission and computation
model in more detail and precision.

A. The communication and computation model

We now give the basic assumptions in our communication
and computation model. The most important assumptions are
5 and 6, which state that no mixing of data is allowed
across realizations of data, and that any computation at any
node should be according to the operations dictated by the
computation graph.
1) Time is slotted, and all links can be used simultaneously
once in each slot.

2) There is unbounded memory at each node.
3) Source si generates the data sequence {Xi(k)}k≥1. The
entire data sequence is assumed to be available at any
time at si. This is to ensure that the computation rate
is restricted only by the link capacities, and not by the
source data rates.

4) If the capacity of a link e is c(e) per use (that is,
per slot), and if n is any positive integer, then in any
consecutive block of n time-slots, a total of upto �nc(e)�
symbols can be communicated across e.
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Fig. 2. A computation tree of, for example, Θ = (X1X2 +X3)X4. (a) A network to compute Θ, the numbers labeling the edges indicate their capacity
(b) A possible embedding that computes Θ at unit rate.

5) Suppose Y = ∪n∈NYn is the data available at a node
u in the network in the beginning of a time-slot, where
Yn ⊆ {θ(X(n))|θ ∈ Γ} denotes the set of functions of
the sources’ data of realization n available at the node.
Then any symbol communicated in that time-slot on an
outgoing link is a function g(Y) of the available data1.
Further, for some n ∈ N, the function g(Y) is of the
form

g(Y) = g(Yn),

that is, it is a function of only one realization of data
generated at the sources.

6) One of the following holds.
A) g(Yn) ∈ Yn, i.e., the symbol transmitted on the link
is one of the symbols received at that node.
B) g(Yn) = θ(X(n)) for some θ ∈ Γ such that
{η(X(n))|η ∈ Φ↑(θ)} ⊆ Yn. That is, the transmitted
symbol is computed from the data available at the node
using an operation indicated by a node in Ω.

The conditions 5) and 6) constrains the computations at nodes
to be restricted among the same realization of data, and also
such computations to follow the operations indicated by the
computation graph.

B. Definitions

In this subsection, we formally define a routing-computing
scheme, achievable rate, and computing capacity. These are
natural definitions under our set-up, and a reader preferring to
skip the formalism can skip these definitions and the proof of
Theorem 1 in Appendix A.
Let us consider a fixed block of K source symbols indexed

by 1, 2, · · · ,K for each source. At any point of time, a node
can have in its memory, a subset of the universe of data: D =
Γ× [1,K], where any element (θ, k) ∈ D denotes the function
θ(X(k)) of the k-th data symbols. For any subset D1 ⊆ D
and any k ∈ [1,K], we define

D1(k) = {θ ∈ Γ|(θ, k) ∈ D1}
1More precisely, the available data should be indexed by the time-slot and

u, and the function should be indexed by the time-slot, the link, and the
symbol-index in that time-slot in case of multiple symbols transmitted in a
time-slot. However, we omit these indices to keep the notation simple.

as the cross-section of D1 at k.

Definition 2: A subset Γ′ ⊆ Γ is said to be irreducible if
� ∃θ ∈ Γ such that Φ↑(θ) ⊆ Γ′. A subset D1 ⊆ D is said to
be irreducible if for each k ∈ [1,K], D1(k) is irreducible.

We now define a routing-computing scheme below. A
scheme can be thought in terms of L events El, 1 ≤ l ≤ L;
and Dv,l ⊆ D and Dv,l+1 ⊆ D as the state (of knowledge) of a
node v before and after the l-th event El respectively. For each
l ≤ L, the event El is either a computation event where a node
v computes a function θ(X(k)) using {η(X(k))|η ∈ Φ↑(θ)},
which is available at v, or a communication event where some
data θ(X(k)) is communicated from a node u to another node
v over the edge uv. In the case of a computation event at v,
the states of all other nodes are unchanged by El. In the case
of a communication event from u to v, the states of all nodes
other than u and v are unchanged by El.

Definition 3: A ({Ne|e ∈ E},K) routing-computing
scheme for (N ,G) has for some positive integer L, some
irreducible2 subsets {Dv,l ⊆ D|v ∈ V, 1 ≤ l ≤ L + 1} (Dv,l

denotes the subset of D available at node v at time l) such
that

1. Initial condition: For 1 ≤ i ≤ κ, Dsi,1 = {(θi, k)|1 ≤
k ≤ K}. For all v ∈ V \ {si|1 ≤ i ≤ κ}, Dv,1 = ∅.

2. For each l < L+ 1, one of the following holds.

(i) Computation event: For some v ∈ V, k ∈ [1,K] and
θ ∈ Dv,l(k) such that Φ↑(θ) ⊆ Dv,l(k), it holds that

Dv,l+1 = {(θ, k)} ∪ Dv,l \ {(η, k)|η ∈ Φ↑(θ)},
Du,l+1 = Du,l, ∀u ∈ V \ {v}.

Here, v computes the function θ(X(k)) using {η(X(k))|η ∈
Φ↑(θ)}, which is available at v.

(ii) Communication event: For some uv ∈ E, θ ∈ Γ and

2Irreducibility of these subsets is not a crucial requirement. However, under
the routing-computing setup we consider, no node needs to retain in its
memory the values it has used to compute or it has transmitted. So, it is
sufficient to assume that the nodes always has, in its memory, an irreducible
subset of D.
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k ∈ [1,K] such that (θ, k) ∈ Du,l, it holds that

Du,l+1 = Du,l \ {(θ, k)}
Dv,l+1 = Dv,l ∪ {(θ, k)}
Dw,l+1 = Dw,l ∀w �= u, v.

Here, θ(X(k)) is communicated from u to v on the link uv.

3. Final condition:

Dt,L+1 = {(Θ, k)|1 ≤ k ≤ K},
Dv,L+1 = ∅ ∀v �= t.

4. Total link usage: For all e ∈ E,

|{l ∈ [1, L]|El is a communication over e}| = Ne.

We emphasize again that our schemes only combine sym-
bols with same k (the same realization) for the purpose of
computation as dictated by the computation graph. So we call
our schemes routing-computing schemes. They do not allow
combining different realizations of data at a node—a flexibility
which may offer higher computation rates. See Sec. VI for an
example.
A ({Ne|e ∈ E},K) routing-computing scheme makes

Ne/c(e) uses of an edge e ∈ E (that is, the edge needs to be
used for Ne/c(e) slots), and achieves K computations of Θ
at the terminal. Note that if a computation rate λ is achieved
by a scheme, then no edge is used for more than K/λ slots.
This motivates the following definition.
Definition 4: For a given capacity constrained network N ,

{c(e)|e ∈ E}, and a computation tree G, A rate λ is said to
be (N ,G)-achievable if for every ε > 0, there is a ({Ne|e ∈
E},K) routing-computing scheme for (N ,G) so that Ne(λ−
ε) ≤ c(e)K, ∀e ∈ E.
Definition 5: The supremum of all (N ,G)-achievable rates

is called the computing capacity for (N ,G), and is denoted
by C(N ,G).
Definition 6: An algorithm is said to give a near-optimal

solution if, for any chosen ε > 0, it produces a scheme which
achieves at least (1− ε) fraction of the computing capacity.

III. EFFICIENT FLOW-BASED ALGORITHM

In this section, we present the first part of our main
contributions.

• In Section III-A, we give a basic linear program, the
Embedding-Edge-LP , which characterizes the computing
capacity C(N ,G) of a network N for computing a
function using a given computation tree G.

• In Section III-B, we give an alternate LP, the Node-Arc-
LP , that can be solved in polynomial time. We then
present an algorithm which obtains a solution of the
Embedding-Edge-LP with the same rate from a solution
of the Node-Arc-LP .

A. The Embedding-Edge LP

As discussed in Sections I and II, the function for a par-
ticular sample of the data can be computed over the network
using any embedding of G in N . Let B be the set of all

embeddings of G in N . For any embedding B ∈ B, let x(B)
denote the average number of function symbols computed
using the embedding B per use of the network. Thus, for a
given allocation of the timeshares to each of the embeddings,
λ, defined by

λ
�
=

∑
B∈B

x(B)

is the rate at which Θ can be computed in the network. This
leads us to formulate Embedding-Edge LP, a linear program
to maximize the computation rate of Θ. Recall that rB(e)
represents the number of times the edge e is used in the
embedding B.

Embedding-Edge LP
Maximize λ =

∑
B∈B x(B),

subject to the following constraints.

1. Capacity constraints∑
B∈B

rB(e) x(B) ≤ c(e), ∀ e ∈ E.

2. Non-negativity constraints

x(B) ≥ 0, ∀ B.

The following theorem states that Embedding-Edge-LP
characterizes the computing capacity C(N ,G).
Theorem 1: The maximum value of λ obtained by a so-

lution of the Embedding-Edge-LP is the computing capacity
C(N ,G).
We remark that the Embedding-Edge LP is essentially a

fractional packing problem—packing of the embeddings of
G into N . Similar packing LPs characterize the maximum
achievable rates in multi-commodity problems. However, since
our problem is more general (computing problem in contrast
to communication problem), we explicitly present a proof
of Theorem 1 in Appendix A in two parts: (i) (N ,G)-
achievability of the rate obtained by solving the LP, and
(ii) a proof of converse, i.e., that no higher rate is (N ,G)-
achievable.

For a given allocation {x(B)}, on each edge of N , the
flows (different functions of X) have to be mixed according
to different embeddings but we need to be careful to not
mix different realizations of the data stream. Thus, in an
implementation, for a given {x(B)}, we need to carefully
devise a protocol to schedule the computation at the nodes
and the communication on the edges in such a way that
data from different realizations (i.e., different elements of the
vector sequence {X(k)}k≥0) are not mixed. Such a schedule
is presented in Appendix B.

The cardinality of B is, in general, exponential in |V |.
Hence a naive solution to Embedding-Edge LP will have
an exponential complexity in the network parameters and
an efficient solution will need to exploit some structure of
the problem. In the following subsection, we present an LP
based on a flow-conservation principle which can be solved
in polynomial time.



720 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 31, NO. 4, APRIL 2013

v

f X
1

f
X

1
X

2

f
X

2

f X
1−

f
1

f
X

1
X

2
+
f
1

f
X

2
− f

1

Fig. 3. Functional flow conservation at a node with three input and three
output flows.

B. The Node-Arc LP

In multi-commodity flow problems, a simple flow-
conservation principle applied at each node gives a
polynomial-time solution to the problem which is other-
wise hard to solve from the Path-Edge LP (similar to our
Embedding-Edge-LP ). Traditional flow-conservation does not
hold in our problem as explained subsequently, and this poses
a difficulty of ready use of the same technique. In this
subsection, we point out a flow conservation that holds in our
setup and present an LP for our problem based on this. This
will finally allow a polynomial time solution of the problem.
In our setup, flows can be consumed as well as generated at

the nodes. This is illustrated in Fig. 3. In this figure, Node v
has fX1 , fX2 , and fX1X2 units of incoming flow of X1, X2,
andX1X2 respectively. Suppose it uses f1 units of X1 andX2

each to compute f1 units of X1X2. Thus the corresponding
outgoing flow from v consists of (fX1 − f1) units of X1,
(fX2−f1) units of X2, and (fX1X2+f1) units ofX1X2. This
violates the traditional flow-conservation principle, but we
develop a more general conservation principle which allows
such flow values resulting from computation at nodes.
We first assume that each node in the network has a self-

loop of infinite capacity. The data flowing in the self-loop
represents the data generated at that node. This may be the
source data generated at a source or the values that are com-
puted at a node. For example, for computing Θ = X1X2+X3

according to the computation tree in Fig. 1(a), if a node
computes X1 ·X2 from the X1 and X2 it receives, and then
computes X1 · X2 + X3 by using X1 · X2 that it computed
and X3 that it receives, then both X1 ·X2 and X1 ·X2 +X3

will be assumed to flow in the self-loop at the node.
The variables in the Node-Arc LP are{

fθ
uv, f

θ
vu|uv ∈ E, θ ∈ Γ

} ∪ {
fθ
uu|u ∈ V, θ ∈ Γ

} ∪ {λ},
where, fθ

uv represents the flow of type θ ∈ Γ flowing through
the edge uv ∈ E from u to v, fθ

uu denotes the flow of type
θ flowing in the self-loop at u and λ represents the total rate
of the function computation.
As we described in the example above, the flow conserva-

tion rule accounts for the fact that an intermediate node in N
can (1) forward the flows it receives, and (2) generate a flow

s1 s2 s3

u v

w x

t

f
X

1
=

1

f X
1
=
0.5

f
X

2
=

1
.5

f X
1
=
1

f
X
1
X
2

=
0.
5

f
X
2

=
1

f
X

3
=
1.
5

fX3 = 1

f
X
3

=
0.
5

f X
1X

2
=
0.5

f X
1X

2+
X

3
=
1

fX1 = 1.5 fX2 = 1.5 fX3 = 1.5

f
X

1
X

2
=

0
.5

fX1X2 = 1
fX1X2+X3 = 1

fX1X2+X3 = 0.5

Fig. 4. An example of edge-flow values for a total computation rate of 1.5.

of type θ on its self-loop by terminating (consuming) equal
amounts of incoming flows of type η ∈ Φ↑(θ). Each source
node sl, in addition, generates λ amount of flow of type θl.
Similarly, the terminal node t terminates λ amount of flow of
type θ|Γ|. An example of the flows on the edges and the self-
loops corresponding to a flow assignment on two embeddings
is shown in Fig. 4. The Node-Arc LP is as follows. Recall that
ℵ′(v) denotes the set of neighbors of v and itself.

Node-Arc-LP

Maximize λ

subject to the following constraints.

1. Functional conservation of flows at all nodes v ∈ V,

fη
vv +

∑
u∈ℵ(v)

fθ
vu −

∑
u∈ℵ′(v)

fθ
uv = 0, ∀θ ∈ Γ \ {θ|Γ|}

and ∀η ∈ Φ↓(θ). (1)

2. Conservation and termination of θ|Γ| at all nodes v ∈ V,

∑
u∈ℵ(v)

f
θ|Γ|
vu −

∑
u∈ℵ′(v)

f
θ|Γ|
uv =

{
−λ for v = t,

0 otherwise.
(2)

3. Generation of θl ∀l ∈ {1, 2, . . . , κ} and at all nodes v ∈ V,

fθl
vv =

{
λ for v = sl,

0 otherwise.

4. Capacity constraints at all edges uv ∈ E,∑
θ∈Γ

(
fθ
uv + fθ

vu

) ≤ c(uv).
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5. Non-negativity constraints,

fθ
uv ≥ 0, ∀uv ∈ E and ∀θ ∈ Γ

fθ
uu ≥ 0, ∀u ∈ V and ∀θ ∈ Γ

λ ≥ 0.

The functional conservation of flows used in the Node-Arc-
LP is a key concept in this paper. In the following example,
we explain how the flows indicated in Fig. 4 respect functional
conservation of flows.

Example 3 (Functional conservation of flows): (i)
Consider node w, θ = X1X2, and η = X1X2 +X3. The first
term in the LHS of (1) is fX1X2+X3

ww = 1. The second term is
fX1X2
wu +fX1X2

wv +fX1X2
wx +fX1X2

wt = 0+0+0+0.5 = 0.5, and
the third term is fX1X2

ww +fX1X2
uw +fX1X2

vw +fX1X2
xw +fX1X2

tw =
1 + 0 + 0.5 + 0 + 0 = 1.5. Thus clearly, they satisfy (1).
(ii) Consider the same flows θ = X1X2 and η = X1X2 +

X3 at the node t. The first term in the LHS of (1) is
fX1X2+X3
tt = 0.5. The second term is fX1X2

tw + fX1X2
tx =

0 + 0 = 0, and the third term is fX1X2
tt + fX1X2

wt + fX1X2
xt =

0 + 0.5 + 0 = 0.5. Clearly, they too satisfy (1).
(iii) Consider the flow θ = X1X2 + X3 at w. The

first term in the LHS of (2) is fX1X2+X3
wu + fX1X2+X3

wv +
fX1X2+X3
wx + fX1X2+X3

wt = 0 + 0 + 0 + 1 = 1. The second
term is fX1X2+X3

ww + fX1X2+X3
uw + fX1X2+X3

vw + fX1X2+X3
xw +

fX1X2+X3
tw = 1+0+0+0+ 0 = 1. Clearly they satisfy (2).
(iv) Consider the flow θ = Θ = X1X2 + X3 at t. Note

that in this example, λ = 1.5. The first term in the LHS of
(2) is fX1X2+X3

tw + fX1X2+X3
tx = 0 + 0. The second term is

fX1X2+X3
tt + fX1X2+X3

wt + fX1X2+X3
xt = 0.5 + 1 + 0 = 1.5.

Clearly, they too satisfy (2).
The Node-Arc-LP has O(κm) number of variables, O(κm)

number of non-negativity constraints (one for each variable),
and O(κn+m) number of other constraints. Hence it can be
solved in polynomial time.
A solution of the above LP gives a set of flow values on each

link. Note that unlike a multi-commodity flow problem, the
solution to Node-Arc-LP does not readily describe a practical
communication and computation protocol over the network.
In the multi-commodity flow problem, if a node forwards
fractions of an incoming flow to two different links, it can do
so by arbitrarily choosing which data goes over which link.
However, in the function computation problem a node cannot
do this arbitrarily; only data of the same realization can be
mixed at network nodes as per the computation schema. We
thus present Extract-Embeddings algorithm, which, from any
feasible solution of Node-Arc-LP , obtains a feasible solution
for Embedding-Edge-LP that achieves the same total flow
λ. As pointed out later, Extract-Embeddings constructs only
a polynomial number of embeddings and assigns non-zero
flows to them. Thus Extract-Embeddings does not enumerate
all possible embeddings, as would be the case for solving
Embedding-Edge LP directly.
Before discussing Extract-Embeddings we first remark that

a cyclic flow, i.e., a flow of non-zero volume of any type
θ across a cycle in the network graph, can occur in a
feasible solution of the Node-Arc LP. This is clear from

the formulation, and such extra non-contributing cyclic flows
are standard artifacts in the flow-based solutions of multi-
commodity problems as well. Such a cyclic flow can be
removed from the solution without affecting its feasibility or
its objective value λ.
Extract-Embeddings is an iterative algorithm. In each iter-

ation of the while loop (lines 2–33) we find an embedding
with a non-zero flow and remove the corresponding edge-
flows to obtain another feasible solution with a reduced rate.
For this, we start by finding a mapping of θ|Γ|, viz. B(θ|Γ|).
Its last node is t. If f

θ|Γ|
tt > 0, then we assign B(θ|Γ|) = t.

Else, we seek an edge vt that carries positive flow of type
fθ|Γ| . We continue this search backwards till we find a node
u for which f

θ|Γ|
uu > 0, and assign the explored path u . . . t to

B(θ|Γ|). We now repeat (for loop in line 6) this process for all
θ ∈ Φ↑(θ|Γ|) to find B(θ) ending at u. When the search for
B(θi), ∀θi ∈ Γ is completed, we have successfully found an
embedding carrying a positive flow. z′ and z(·) keep track of
the maximum flow that the embedding can carry; this is equal
to the minimum of the flows in the edges of the embedding.
While exploring nodes to find B(θi), the if block starting in
line 10 checks for presence of a cyclic flow of type θi. If such
a cycle is found, it is removed from the explored path and the
corresponding flow volume is removed from the edges in the
cycle. The flow removed from an embedding or a cycle is
the maximum possible flow on that embedding or cycle, so
that when removed, the corresponding flow in one link (the
bottleneck link) is made zero by the removal.

Theorem 2: Algorithm Extract-Embeddings is correct and
the time complexity is in O(κ2m2).

Proof: The proof of the following statements clearly
ensures the correctness of the algorithm.

1) In line 9, such a u exists.
2) If a cycle of redundant flow is found and removed in
lines 10–15, then the remaining flows still satisfy the
constraints in the LP with total flow (λ) unchanged.

3) At the end of each iteration of the while loop (lines 2–
33), the remaining flows still satisfy the constraints in
the LP with λ replaced by λ− λ′.

4) The algorithm terminates in finite time.

We now outline a proof of each of these statements. We
prove the statements 1)–4) for each iteration of the loops while
assuming that all the above claims are true in all the previous
iterations of the while and for loops.
Proof of 1: The current values of the flows satisfy all the

constraints in the Node-Arc LP with λ replaced by λ − λ′.
The algorithm ensures that in this step, the total outgoing flow∑

u∈ℵ(v) f
θ
vu ≥ z(v) > 0. Hence, by constraints (1) and (2),

the total of incoming and generated flows
∑

u∈ℵ′(v) f
θ
uv > 0.

Hence the statement follows.
Proof of 2: We will prove that a cyclic flow on a cycle

v1, v2, · · · , vl, v1 satisfies all the constraints in the Node-Arc
LP with λ = 0. Then clearly after subtracting this flow from
the edges of the cycle, the remaining flows in the network will
still satisfy the constraints with the same λ as before. For a
cyclic flow of type θ of volume y, the flow values are fθ

vivi+1
=

y for i = 1, 2, · · · , l− 1, fθ
vlv1 = y, and all other flow values
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Algorithm Extract-Embeddings: Finding an equivalent
solution of Embedding-Edge-LP from a feasible solution
of Node-Arc-LP .
input : Network graph N = (V,E), capacities c(e), set

of source nodes S, terminal node t, computation
tree G = (Ω,Γ), and a feasible solution to its
Node-Arc LP that consists of the values of λ, fθ

uv

∀θ ∈ Γ, ∀uv ∈ E, and fθ
uu ∀θ ∈ Γ, ∀u ∈ V .

output: A subset B′ ⊆ B and flows {x(B)|B ∈ B′} with∑
B∈B′ x(B) = λ so that these together with

x(B) = 0 for B ∈ B \ B′ is a solution to
Embedding-Edge LP.

1 Initialize λ′ = 0
2 while λ′ �= λ do
3 z′ := λ ;
4 B(θ|Γ|) := t ; // Start defining a new

embedding B
5 B(θi) = ∅ for i = 1 to |Γ| − 1;
6 for i := |Γ| to 1 do
7 v := end(B(θi)) ;
8 z(v)=z′ ;
9 u := an element in ℵ′(v) such that fθi

uv > 0 ;
10 if u �= v and u ∈ B(θi) then
11 Let P be the path in B(θi) upto the first

appearance of u in it;
12 Delete P from B(θi) ;

13 y := minu′v′∈{uv}∪P

(
fθi
u′v′

)
;

14 fθ
u′v′ := fθ

u′v′ − y ∀u′v′ ∈ {uv} ∪ P
15 end
16 else
17 z(u) := min

(
z(v), fθi

uv

)
;

18 end
19 if u �= v then
20 Prefix u in B(θi) ;
21 v := u ;
22 Break and jump to line 9 ;
23 end
24 else
25 B(η) := u, ∀η ∈ Φ↑(θi) ;
26 z′ = z(u) ;
27 end
28 end
29 x(B) := z′ ;
30 λ′ := λ′ + x(B) ;
31 fθ

u′v′ := fθ
u′v′ − x(B) ∀θ ∈ Γ and ∀u′v′ ∈ B(θ) ;

32 fθ
v′v′ := fθ

v′v′ − x(B) ∀θ ∈ Γ and v′ = start(B(θ)) ;
33 end

are equal to 0. Hence, for any node, any nonzero incoming
flow is ‘compensated’ by the same amount of outgoing flow
of the same type. All flow values in the self-loops are also 0.
So clearly these flows satisfy the constraints in the LP with
λ = 0. This completes the proof.
Proof of 3: Again, we will prove that the removed x(B)

amount of flows on the edges of an embedding and on the
self-loops themselves satisfy the constraints in the LP with

λ = x(B). Then the remaining flows will also satisfy the
constraints with λ replaced by λ− x(B). The subtracted flow
values are fθ

uv = x(B) for uv ∈ B(θ), fθ
uu = x(B) for

u = start(B(θ)), and all other flow values 0. We can verify
that these flows satisfy the constraints in the Node-Arc LP.

Proof of 4: The Node-Arc LP has O(m|Γ|) = O(mκ)
number of variables fθ

uv and fθ
uu. Each deletion of flows

through a cycle, or through an embedding, makes at least one
of these variables zero. Since the number of steps in each
iteration is finite, the algorithm ends in finite time.
Since |{fθ

uv|uv ∈ E, θ ∈ Γ}| is in O(κm), the total number
of cycles traversed and removed is in O(κm). Similarly, the
total number of embeddings that the algorithm finds is in
O(κm). Also, one can check that the time taken by the algo-
rithm between consecutive removals of cycles or embeddings
is in O(κm). Thus, the Extract-Embeddings algorithm has the
overall complexity in O(κ2m2).
The polynomial time-complexity implies that only poly-

nomial number of embeddings will be assigned with non-
zero flows by this algorithm. This is compatible with the
well known fact that even in traditional multi-commodity flow
problems, the solution of the corresponding node-arc LP gives
non-zero flows only on polynomial number of paths.

IV. FASTER NEAR-OPTIMAL SOLUTION AND MIN-COST
EMBEDDING

The Node-Arc LP and the Extract-Embeddings algorithm
to find an optimal solution of the Embedding-Edge LP has
polynomial-time complexity. We now give the dual of our
Embedding-Edge LP and present a faster primal-dual algo-
rithm to compute a near-optimal solution, i.e., a solution that
achieves at least (1 − ε) fraction of the computing capacity
C(N ,G) for any chosen ε > 0. This algorithm needs a
subroutine which finds a ‘minimum weight embedding’ of
the computation tree in the network for given edge-weights.
We present an efficient algorithm for this purpose. This algo-
rithm is of independent interest, for instance, for computing
functions over a network with power-limited, but with infinite-
bandwidth, links.
We begin by recalling that Embedding-Edge LP is a frac-

tional packing problem. For multi-commodity flow packing
problems, Garg and Konemann [4] gave a fast primal-dual
algorithm to find a near-optimal solution that is within (1− ε)
of the optimal packing. Based on this technique, we present
a fast algorithm to obtain an (1 − ε)-optimal solution to the
Embedding-Edge LP. A key requirement of the algorithm of
[4] is an oracle subroutine that finds the shortest paths between
the source-terminal pairs. We too will use an oracle subroutine
but our oracle needs to find the minimum weight embedding;
we call it Min-Cost-Embedding(L). Min-Cost-Embedding(L)
finds the minimum weighting embedding of G in a weighted
graph N with weights L.
We first write the dual of the Embedding-Edge LP. The dual

has the variables L = {l(e)}e∈E corresponding to the capacity
constraints in the primal. The dual LP is given as follows.
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Dual of Embedding-Edge LP: Minimize D(L) =∑
e∈E c(e)l(e) subject to
1. Constraints corresponding to each x(B) in primal:∑

e∈B

rB(e)l(e) ≥ 1, ∀B ∈ B

2. Non-negativity constraints:

l(e) ≥ 0, ∀e ∈ E

We define the weight of an embedding B as

wL(B) =
∑
e∈B

rB(e)l(e).

Following the method of [4], it can be checked that the dual
LP is equivalent to finding minL

D(L)
αL

, where

αl = min
B

wl(B)

is the cost of the minimum cost embedding for L.
For a packing LP of the form

max
{
aTx|Ax ≤ b, x ≥ 0

}
and its dual LP of the form

min
{
bT y|AT y ≥ a, y ≥ 0

}
,

the shortest path is defined as
∑

iA(i, j)y(i)/a(j) [4]. It can
be seen that for the Embedding-Edge LP, the ‘shortest path’
corresponds to the embedding with minimum weight, i.e.,
argminB wL(B). Algorithm FANO below gives the instance
of the primal-dual algorithm for the Embedding-Edge LP.

Algorithm FANO: Fast Algorithm for finding near
optimal x and λ

input : Network graph N = (V,E), capacities c(e), set
of source nodes S, terminal node t, computation
tree G = (Ω,Γ), the desired accuracy ε

output: Primal solution {x(B), B ∈ B} s.t.∑
B∈B x(B) ≥ (1− ε)C(N ,G)

1 Initialize l(e) := δ/c(e), ∀e ∈ E, x(B) := 0, ∀B ∈ B ;
2 while D(l) < 1 do
3 B∗ := Min-Cost-Embedding(L) ;

// Min-Cost-Embedding(L) outputs
argminB wL(B)

4 e∗ := edge in B∗ with smallest c(e)/rB∗(e) ;
5 x(B∗) := x(B∗) + c(e∗)/rB∗(e∗) ;
6 l(e) := l(e)(1 + ε c(e

∗)/rB∗ (e∗)
c(e)/rB∗ (e) ), ∀e ∈ B∗ ;

7 end
8 x(B) := x(B)/ log1+ε

1+ε
δ , ∀B ;

We now describe, and then provide below, the subroutine
Min-Cost-Embedding(L) that finds a minimum weight embed-
ding of G on N with a given length/cost function L. For each
edge θi, starting from θ1, the algorithm finds a way to compute
θi at each network node at the minimum cost possible. It keeps
track of that minimum cost and also the ‘predecessor’ node

from where it receives θi. If θi is computed at that node itself
then the predecessor node is itself. This is done for each θi
by a technique similar to Dijkstra’s shortest path algorithm.
Computing θi for i ∈ {1, 2, . . . , κ} at the minimum cost at a
node u is equivalent to finding the shortest path to u from si.
We do this by using Dijkstra’s algorithm. For any other i, the
node u can either compute θi from Φ↑(θi) or receive it from
one of its neighbors. To take this into account, unlike Dijkstra’s
algorithm, we initialize the cost of computing θi with the cost
of computing Φ↑(θi) at the same node. With this initialization,
the same principle of greedy node selection and cost update
as in Dijkstra’s algorithm is used to find the optimal way of
obtaining θi at all the nodes. Finally, the optimal embedding
is obtained by backtracking the predecessors. Starting from t,
we backtrack using predecessors from which θ|Γ| is obtained,
till we hit a node whose predecessor is itself. This node
is the start node of B(θ|Γ|) and the end node of B(η) for
all η ∈ Φ↑(θ|Γ|). The complete embedding is obtained by
continuing this process for each θi in the reverse topological
order. This is described in Procedure Min-Cost-Embedding.

Procedure Min-Cost-Embedding(L)

input : Network graph N = (V,E), Length function L,
set of source nodes S, terminal node t,
computation tree G = (Ω,Γ).

output: Embedding B∗ with minimum weight under L

1 for i = 1 to |Γ| do
2 if i ∈ {1, 2, . . . , κ} then
3 ωu (θi) := ∞, ∀u ∈ V − {si} ;
4 ωsi (θi) := 0 and σsi (θi) := si ;
5 end
6 else
7 ωu (θi) :=

∑
η∈Φ↑(θi) ωu (η) , ∀u ∈ V ;

8 σu (θi) := u, ∀u ∈ V ;
9 end
10 Ψ := ∅; Ψ̄ := V ;
11 while |Ψ| < n do
12 v := argminu∈Ψ̄ ωu (θi) ;
13 Ψ := Ψ ∪ {v} ;
14 Ψ̄ := Ψ− {v} ;
15 foreach u ∈ ℵ(v) do
16 if ωv (θi) + l(uv) < ωu (θi) then
17 ωu (θi) := ωv (θi) + l(uv) ;
18 σu (θi) := v ;
19 end
20 end
21 end
22 end
23 B∗(θ|Γ|) := t ;
24 for i = |Γ| to 1 do
25 u := end(B∗(θi)) ;
26 while σu (θi) �= u do
27 Prefix σu (θi) to B∗(i) ;
28 u := σu (θi) ;
29 end
30 B∗(η) := u ∀η ∈ Φ↑(θi) ;
31 end
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Theorem 3: Min-Cost-Embedding(L) is correct and has
time complexity O(κ(m+ n logn)).

Proof: To prove the correctness, it is sufficient to show
that, during each phase i, the algorithm computes optimal
values for ωu (θi) and σu (θi), for each node u in N . We
prove this by induction on the pair (i, |Ψ|) according to the
lexicographic ordering. For i ∈ {1, . . . , κ} and for all |Ψ|,
this follows from the correctness of Dijkstra’s algorithm. Now,
assuming the optimality of ωu (θi) and σu (θi) till all iterations
before (i, |Ψ|), we prove the statement for (i, |Ψ|). Suppose v
is the element added to Ψ in the current iteration. We consider
two cases:

• Case 1: Ψ = {v}: The cost of computing (and not
receiving from another node) θi at any node u is∑

η∈Φ↑(θi) ωu (η). The algorithm chooses v which has
the minimum

∑
η∈Φ↑(θi) ωu (η) among all nodes u ∈ V

and assigns ωv (θi) =
∑

η∈Φ↑(θi) ωv (η) and σv (θi) = v.
If these are not optimal, then it must be more efficient for
v to receive θi which is computed at some other node u.
But that implies

∑
η∈Φ↑(θi) ωu (η) <

∑
η∈Φ↑(θi) ωv (η),

which is a contradiction to the choice of v.
• Case 2: {v} � Ψ: Suppose there is a more efficient
way of receiving θi at v than from the node selected
as σv (θi) and that is to compute θi at a node u and
receive it along a path Pu,v. Let the corresponding
cost be ω′

v(θi). First, if u ∈ Ψ̄, then the present cost(
≤ ∑

η∈Φ↑(θi) ωu (η)
)
at u is less than the present value

of ωv (θi), which is a contradiction to the choice of v.
Thus u ∈ Ψ. Let u′ be the last node in Pu,v from
Ψ, and v′ be the first node in Pu,v from Ψ̄. Then
ω′
v(θi) ≥ ωu′ (θi) + l(u′v′) ≥ ωv′ (θi) ≥ ωv (θi)—
a contradiction. Here the first inequality follows since
u′ ∈ Ψ. The second inequality follows from the update
rule followed during the inclusion of u′ in Ψ. The last
inequality follows from the choice of v.

This completes the proof of correctness. To obtain the com-
plexity, consider the first for loop in Min-Cost-Embedding(L).
Each iteration of this loop is the same as Dijkstra’s algorithm
except for the initialization. Thus, the for loop, excluding
the initialization step, can be run in O(m + n logn) time
using Fibonacci heap implementation. The initialization step
requires O(n|Φ↑(θi)|) time for each iteration. The second for
loop has O(nκ) complexity. So the overall algorithm takes
O(κ(m+ n logn)) time.
The number of iterations in the primal-dual algorithm is of

the order O(ε−1m log1+ε(m)). Thus the overall complexity
of the algorithm is O

(
ε−1κm(m+ n logn) log1+ε(m)

)
.

A. Distributed implementation:

One of the distinctive feature of the above primal-dual
algorithm is its amenability to distributed implementation.
First, consider distributed implementation of the oracle. As
noted above, an execution of Min-Cost-Embedding(L) has
two stages—(1) initialization and execution of a sequence of
shortest path algorithm, and (2) obtaining the corresponding
min-weight embedding. The initialization of the shortest path
algorithm at each node depends only on the values from previ-

ous iterations at that node and the knowledge of computation
graph.
Efficient distributed implementation for finding shortest

paths, wherein information is shared only among neighbors,
are well studied [24]. Further, the knowledge of the min-
weight embedding is implicit in the network in the form of
σu (θ) at each node u, for each θ ∈ Γ. For example, at the
destination node t, if σt

(
θ|Γ|

) �= t, node t needs to commu-
nicate and obtain θ|Γ| from its neighbor u = σt

(
θ|Γ|

)
. Now,

if σu (θ) = u, node u needs to compute θ by obtaining Φ↑(θ)
from nodes σu (η) for all η ∈ Φ↑(θ), and so on. Thus, the
distributed version of the algorithm would be of the following
form. Periodically, each node computes weights of its incident
edges as a function of their capacity and total flow through
them. Then, the nodes run the sequence of distributed shortest
path algorithm to obtain σu (θ) for each θ. A fraction of the
flow generated at the sources is then transmitted through the
resulting embedding using the knowledge of σu (θ). Rigorous
development of such an algorithm to obtain fault-tolerant
and adaptive distributed implementation would be yet another
interesting avenue for further research.

V. EXTENSIONS AND OPEN PROBLEMS

1. Multiple trees for the same function: A function may
have many possible computation trees. For example, the well-
investigated [17] ‘sum’ function Θ(X1, X2, X3) = X1+X2+
X3 may be computed by any of the computation sequences(
(X1+X2)+X3

)
,
(
X1+(X2+X3)

)
, or

(
X2+(X1+X3)

)
.

In general, suppose multiple computation trees G1,G2, . . . ,Gν

are given for computing the same function. Let Bi denote the
set of all embeddings of Gi for i = 1, 2, . . . , ν. Let B = ∪iBi

denote the set of all embeddings. Under this definition of B,
the Embedding-Edge LP for this problem is the same as that
for a single tree.
One straightforward way to generalize Node-Arc LP to mul-

tiple trees is to index the edge-sets of the trees by disjoint sets
and take flow variables corresponding to all the edges of all
trees. Flow conservation equations can be written for each tree,
and we need to maximize the sum of the flows generated using
such trees. However, such a technique is highly inefficient. For
example, Θ(X1, X2, . . . , Xκ) = X1 +X2 + . . .+Xκ has κ!
number of trees, and so the number of variables and constraints
will be proportional to κ!. However, some edges of different
trees may represent an identical function of the sources. For
example, for the ‘sum’ function X1+X2+X3+X4, an edge
corresponding to the function X1 + X2 is present in each
of the trees corresponding to

((
(X1 + X2) + X3

)
+ X4

)
,(

(X1 +X2) + (X3 +X4)
)
, and

((
(X1 +X2) +X4

)
+X3

)
.

All such edges can be identified and considered as a single
flow type. Node-Arc LP can thus be made more efficient by
constructing flow constraints for each sub-function rather than
each edge of the computation trees. This gives O(2κ) number
flow variables instead of κ! for the sum function. Also, Min-
Cost-Embedding(L) algorithm can be made more efficient by
running iterations for each function rather than each edge. The
initialization of ωu (θ) changes correspondingly, to take into
account all possible ways of computing that function. Rest of
the algorithm remains the same.
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The particular function Θ(X1, X2, . . . , Xκ) = X1 +X2 +
. . .+Xκ is of special theoretical as well as practical interest.
Both Node-Arc-LP and the primal-dual algorithm find optimal
solution with time complexity exponential in κ and polynomial
inm. This is not unexpected since the problem is equivalent to
the much investigated multicast problem. This is in turn equiv-
alent to the fractional Steiner tree packing problem which is
known to be NP-complete. Note, however, that our technique
suggests a suboptimal technique of considering only a subset
of all possible computation trees, which would result in sub-
optimal but acceptable performance. The study of tradeoff of
restricting embeddings and reducing the overall complexity
with suboptimality of the solution, though beyond the scope
of this paper, is an interesting avenue for further study.
For the multicast problem, and consequently for the function

‘sum’, the oracle finds a minimum weight Steiner tree, the
well-known NP-hard problem. Almost optimal (but not near-
optimal, that is, not (1−ε)-optimal for any given ε) polynomial
complexity algorithms are known (see [25] and citations
therein) for finding a minimum weight Steiner tree. This can
also be used to find almost optimal solution to the multicast,
and hence the ‘sum’, in polynomial complexity [25].

2. Multiple functions and multiple terminals: Suppose the
network has multiple terminals t1, t2, . . . , tγ wanting functions
Θ1(X

(1)),Θ2(X
(2)), . . . ,Θγ(X

(γ)) respectively. Here X(i)

is the data generated by a set of sources S(i). The sets
S(i); i = 1, 2, . . . , γ are assumed to be pairwise disjoint. For
each function Θi, a computation tree Gi is given. Let us
consider the problem of communicating the functions to the
respective terminals at rates λ1, λ2, . . . , λγ . The problem is to
determine the achievable rate region which is defined as the
set of r = (λ1, λ2, . . . , λγ) for which a protocol exists for
transmission of the functions at these rates simultaneously.
This region can be approximately found by solving either of
the following problems.
(i) For any given non-negative weights α1, α2, . . . , αγ , what

is the maximum achievable weighted sum-rate
∑γ

i=1 αiλi?
For this problem, we consider embeddings of the com-

putation trees Gi into the network for each terminal ti.
Let Bi denote the set of all embeddings of Gi. Then
the Embedding-Edge LP for this problem is to maximize∑γ

i=1 αi

∑
B∈Bi

x(B). The constraints are the same as before
with B defined by B = ∪iBi. The weight of an embedding
B ∈ B under a weight function L is defined as αiwL(B)
if B ∈ Bi. The new Min-Cost-Embedding(L) algorithm finds
an optimal embedding for each Gi and chooses the one with
minimum weight. This can be used in the same primal-dual
algorithm to find a near-optimal solution. It is also easy to
obtain a Node-Arc LP for this problem by minor modifications
to that for a single function computation at a single terminal.
(ii) For any non-negative demands α1, α2, . . . , αγ , what is

the maximum λ for which the rates λα1, λα2, . . . , λαγ are
concurrently achievable?
Here, we define an embedding to be a tuple B =

(B1, B2, . . . , Bγ), where Bi ∈ Bi is an embedding of the
computation tree Gi. The Embedding-Edge LP for this problem
is the same as that for the single terminal problem with rB(e)
defined as rB(e) =

∑γ
i=1 αi|{θ ∈ Γi|e is a part of Bi(θ)}|

and B = B1 × B2 × . . . × Bγ . The weight of an embedding
B under a weight function L is defined as

∑γ
i=1 αiwL(Bi).

The new Min-Cost-Embedding(L) algorithm finds an optimal
embeddingB by separately finding optimal embeddingsBi for
each Gi. This can be used in the same primal-dual algorithm
to find a near-optimal solution. Again, we can easily obtain
a Node-Arc LP by minor modification to that for a single
function computation at a single terminal.
3. Computing with a specified precision: In practice,

the source data may be real-valued, and communicating such
a data requires infinite capacity. In such applications, it is
common to require a quantized value of the function at the ter-
minal with a desired precision. This may, in turn, be achieved
by quantizing various data types with pre-decided precisions
and thus different data type may require different number
of bits to represent them. Suppose the data type denoted
by θ is represented using b(θ) bits. Then the Embedding-
Edge LP and its dual for this problem are the same as
before except that the definition of rB(e) is changed to
rB(e) =

∑
θ∈Γ:e is a part of B(θ) b(θ). In the Node-Arc LP, the

capacity constraints are changed to∑
θ∈Γ

(
fθ
uv + fθ

vu

)
b(θ) ≤ c(uv), ∀uv ∈ E.

In the Min-Cost-Embedding(L) algorithm, l(uv) is replaced
by l(uv)b(θi) inside the foreach loop.
4. Energy limited sensors: Suppose, instead of capacity

constraints on the links, each node u ∈ V has a total energy
E(u). Each transmission and reception of θ require the energy
ET,θ and ER,θ respectively. Generation of one symbol of θ
or computation of one symbol of θ from Φ↑(θ) requires the
energy EC,θ. The objective is to compute the function at the
terminal maximum number of times with the given total node
energy at each node.
For an embedding B, if B(θ) = v1, v2, · · · , vl, then

tr(B(θ)) = {v1, v2, · · · , vl−1} denotes the transmitting
nodes, and rx(B(θ)) = {v2, v3, · · · , vl} denotes the receiving
nodes of θ. If l = 1, then tr(B(θ)) = rx(B(θ)) = ∅. For B,
the energy load on the node u is given by

EB(u) =
∑

θ:start(B(θ))=uEC,θ +
∑

θ:u∈tx(B(θ))

ET,θ

+
∑

θ:u∈rx(B(θ))

ER,θ.

The capacity constraint in the Embedding-Edge LP is replaced
by the energy constraint on the nodes∑

B∈B
x(B)EB(u) ≤ E(u) ∀u ∈ V,

where an empty sum is defined to be 0. The dual of the
Embedding-Edge LP is: Minimize D(L) =

∑
u∈V E(u)l(u)

subject to
1. Constraints corresponding to each x(B) in primal:∑

u∈B

EB(u)l(u) ≥ 1, ∀B (3)

2. Non-negativity constraints:

l(u) ≥ 0, ∀u ∈ V. (4)
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Fig. 5. Computing Θ = (X1 +X2)(X1 +X3) over a network. (a) A DAG computation schema. (b) The trivial star computation tree. (c) A network for
computing Θ.

The weight or cost of an embedding is defined as

wL(B) =
∑
u∈B

EB(u)l(u).

Min-Cost-Embedding(L) is modified in the weight initializa-
tion and weight update. The weight initialization is done as
ωsi (θi) := EC,θi for source data and ωu (θi) := EC,θi +∑

η∈Φ↑(θi) ωu (η) for other data. The weight update at u
is now done as ωu (θi) := ωv (θi) + ET,θi + ER,θi if
ωv (θi) + ET,θi + ER,θi < ωu (θi). After suitable modifica-
tion, the primal-dual algorithm with the modified Min-Cost-
Embedding(L) algorithm finds a near-optimal solution.

In the Node-Arc LP, the capacity constraints are replaced
by energy constraints at the nodes:∑

θ∈Γ

fθ
uuEC,θ +

∑
θ∈Γ

∑
v∈ℵ(u)

(fθ
uvET,θ + fθ

vuER,θ)

≤ E(u) ∀u ∈ V.

Since the flow on each embedding is required to be integer
in this set-up, the Embedding-Edge-LP and Node-Arc-LP are
both integer programs. Since solving integer programs is in
general difficult, the exact solution of this problem is difficult.
However, the LP relaxation of the problem can be solved
efficiently. In a practical application, if the initial energy
levels of the nodes are large (that is, the solution involves
large number computations on the used embeddings), then the
simple truncation of the solution of the LP relaxation will give
an acceptable solution. Quantifying the gap of this solution
from the optimal solution is an interesting open problem, and
is outside the scope of this paper.

5. Computation schema represented by a directed acyclic
graph (DAG): For some functions, it may be more efficient
to perform the computation in a sequence of computations
which form a directed acyclic graph instead of a directed
tree. For example, consider the function Θ(X1, X2, X3) =
(X1 +X2)(X1 +X3). A natural efficient way of computing
is represented by the computation schema shown in Fig. 5(a).
The alternative trivial ‘star’ computation tree, which represents
bringing all the data X1, X2, X3 to one node for computation
is also shown in Fig. 5(b). Though the optimal computation
rate according to the star computation tree can be found using
our algorithms, using the DAG computation schema may give

a better rate than the best achieved using the star computation
tree. An illustrative example network where this happens is
shown in Fig. 5(c). Here each edge has a capacity of one
symbol per use. Clearly using the natural embedding of the
DAG computation schema in this network provides a rate of
1 computation per unit time. But, it can be seen that the best
rate achieved (using equal time-sharing of two embeddings)
using the star computation schema is 2/3. However, our
solution techniques are not adequate in general for providing
the most efficient solution using a DAG computation schema.
Efficient solution of the problem with DAG computation
schema remains an interesting open problem.

VI. DISCUSSION AND CONCLUSION

In this paper, we have laid the foundations for network
flow techniques for distributed function computation. Though
we have obtained results for computation trees, we believe
that much of our techniques can be extended to larger classes
of functions, for instance, fast Fourier transform (FFT), that
can be represented by more general graphical structures like
directed acyclic graphs and hypergraphs where each edge
or hyper-edge represents a distinct function of the sources.
The sum function discussed in Sec. V is one such function
representable by a hypergraph.
Our computation framework does not allow block coding,

i.e., coding across different realizations of the data. Such
coding has been used in the information theory and network
coding literature. Block coding can, in general, offer better
computation rate. For example, consider the directed butterfly
network as shown in Fig. 6 with two binary source nodes
(with source processes denoted by X and Y ) and a terminal
node with a XOR target function Θ(X,Y ) = X ⊕ Y . It can
be checked that the maximum rate achievable by routing-like
schemes, i.e., without using inter-realization coding, is 1.5.
On the other hand, the scheme shown in Fig. 6(b) using
inter-realization coding achieves a rate of 2. However, for
more general functions, finding the optimal rate and designing
optimal coding schemes is a difficult problem under this
framework. Further, for undirected multicast networks, it is
known that the inter-realization coding can achieve a rate
strictly less than twice the rate achieved by routing [20]. We
expect that similar results will hold for function computation
over undirected networks.
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(a) The butterfly network. Each
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(b) A rate-2 solution using cross-
realization coding

Fig. 6. The butterfly network with XOR target function Θ(X, Y ) = X⊕Y

Altogether, we believe that results in this paper opens many
new avenues for further research.
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APPENDIX A
PROOF OUTLINE OF THEOREM 1

Achievability:We will show that for any {x(B)|B ∈ B} that
satisfies the constraints of the Embedding-Edge-LP , the rate∑

B∈B x(B) is (N ,G)-achievable. Let ε > 0 be any small
positive real number. Since the rational numbers are dense,
we can find a set of rational flows {x′(B)|B ∈ B} such that∑

B∈B x
′(B) ≥ ∑

B∈B x(B)− ε. Let η be the least common
multiple of the denominators of {x′(B)|B ∈ B}. We takeK =
η
∑

B∈B x
′(B). Let Ne = η

∑
B∈B rB(e)x

′(B) for all e ∈ E.
Let us fix an order B1, B2, . . . , B|B| of the embeddings. Let
L(B) =

∑
e∈E rB(e) denote the number of edges taking part

in the embedding B. We will construct a routing-computing
scheme with the following features:
1. It communicates K = η

∑
B∈B x

′(B) realizations of the
function in one session. Out of them, ηx′(B) realizations are
communicated using embedding B.
2. It uses any edge e to communicate Ne =

η
∑

B∈B rB(e)x
′(B) symbols.

3. It has L = η
∑

B∈B L(B)x′(B)+η
∑

B∈B x
′(B)(|Ω|−κ)

events. It has η
∑

B∈B L(B)x′(B) communication events, and
η
∑

B∈B x
′(B)(|Ω| − κ) computation events3.

A routing-computing scheme with the above parameters
clearly satisfies Ne(

∑
B∈B x(B) − ε)

3Note that (|Ω|−κ) is the number of non-source nodes in the computation
graph – each computation of Θ requires these many computation steps.

≤ Ne

∑
B∈B x

′(B) ≤ Kc(e), ∀e ∈ E, and thus guarantees
the achievability of the computing rate

∑
B∈B x(B). We now

describe the scheme. Let

ψB : [1 : L(B) + (|Ω| − κ)] −→ V ∪ (V × V )

be a topological ordering of the (non-source) computation
nodes and the edges of the embedding B obtained by con-
sidering a topological ordering of the non-source nodes and
the edges of G and then replacing each edge θ by the edges
in B(θ) in topological order. Further, let

φB : [1 : L(B) + (|Ω| − κ)] −→ Γ

be such that φB(i) is the data that is computed (if ψB(i) ∈ V )
or carried (if ψB(i) ∈ V ×V ) by ψB(i) in the embedding B.
We define the sets Dv,l ⊆ D; ∀v ∈ V and ∀l ∈ [1, L + 1]

below in an algorithmic fashion.
1. For 1 ≤ i ≤ κ, Dsi,1 = {(θi, k)|1 ≤ k ≤ K}. For all
v ∈ V \ {si|1 ≤ i ≤ κ}, Dv,1 = ∅.
2. For each i = 1, 2, · · · , |B|,

For each j = 1, 2, · · · , ηx′(Bi),
Let k =

∑i−1
ν=1 ηx

′(Bν) + j. We now describe the events
for the k-th realization of data.

For each n = 1, 2, · · · , L(Bi) + (|Ω| − κ),
Let l = η

∑i−1
ν=1 (L(Bν)x

′(Bν) + x′(Bν)(|Ω| − κ)) +
(j − 1)(L(Bi) + (|Ω| − κ)) + n

(i) If v = ψBi(n) ∈ V , then the l-th event is
a computation of θ = φBi(n) at v. The condition
Φ↑(θ) ⊆ Dv,l(k) holds because of the topological
order of the events. The data-sets Du,l+1 are defined
in terms of cDu,l as given in condition 2(i) of the
definition of a routing-computing scheme. That is,
Dv,l+1 = {(θ, k)} ∪ Dv,l \ {(η, k)|η ∈ Φ↑(θ)}. For
all u ∈ V \ {v}, Du,l+1 = Du,l.

(ii) If (u, v) = ψBi(n) ∈ (V × V ) and θ = φBi (n),
then the l-th event is a communication of θ(X(k)) from
u to v over the edge (u, v). (φBi (n), k) ∈ Du,l holds
because of the topological order of the events. The data-
sets Dw,l+1 are defined in terms of cDw,l as given in
condition 2(ii) of the definition of a routing-computing
scheme. That is, Du,l+1 = Du,l\{(θ, k)}, andDv,l+1 =
Dv,l ∪ {(θ, k)}. For any w �= u, v, Dw,l+1 = Dw,l.

Again, by the topological order of the defined events,
it is easy to check that the conditions: Dt,L+1 =
{Θ(X(k))|1 ≤ k ≤ K}, Dv,L+1 = ∅ ∀v �= t, and
for all e ∈ E,

|{l ∈ [1, L]|El is a communication over e}| = Ne

are satisfied.

Converse: It is sufficient to prove that, for any given
({Ne|e ∈ E},K) routing-computing scheme for (N ,G)
satisfying

Neλ ≤ c(e)K, ∀e ∈ E, (5)

there exists a packing {x(B)|B ∈ B} satisfying the constraints
of the Embedding-Edge-LP such that

∑
B∈B x(B) = λ.
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Since the given ({Ne|e ∈ E},K) scheme computes the
function Θ(X(k)) for k = 1, 2, . . . ,K , for each k, the
computation uses an embedding B(k) ∈ B. In particular, for
each e ∈ E, the k-th computation requires communication of
rB(k)(e) symbols over e. So, we have

K∑
k=1

rB(k)(e) = Ne (6)

for all e ∈ E. Now, let us define

x(B) =
λ|{k ∈ [1,K]|B(k) = B}|

K
(7)

for all B ∈ B. By definition, these are non-negative, and∑
B∈B x(B) = λ. Eq. (6) can be rewritten as∑
B∈B

|{k ∈ [1,K]|B(k) = B}|rB(e) = Ne

⇒
∑
B∈B

Kx(B)rB(e) = λNe ≤ Kc(e) (using (7) and (5))

⇒
∑
B∈B

x(B)rB(e) ≤ c(e)

So, {x(B)|B ∈ B} satisfies the conditions of the Embedding-
Edge-LP . Thus {x(B)|B ∈ B} provides a solution of
Embedding-Edge-LP with

∑
B∈B x(B) = λ.

APPENDIX B
CONVERTING TIMESHARE ALLOCATION INTO A

SCHEDULE

Appendix A shows that there exists a routing-computing
scheme achieving a total computation rate arbitrarily close to
any feasible solution of Embedding-Edge-LP . Such a routing-
computing scheme can be implemented in a ‘pipelined’
fashion provided there is no limitation on the latency of
computation and the available memory at each node. Such
an implementation will ensure that all the nodes (respectively
links) are used simulteneously for computing (respectively
communicating) albeit for different realizations of data. This
requires careful design of a scheduling protocol to ensure
that only the data from the same realization are used for any
computation at any node. In this section, we provide such a
scheduling protocol to compute at a rate which is arbitrarily
close to a solution of Embedding-Edge-LP .
Let {x(B)|B ∈ B} be a solution of Embedding-Edge-LP

with rate λ =
∑

B∈B x(B). For any ε > 0, we now outline a
communication and computation protocol designed to receive
the function at the terminal at a rate that is greater than
λ − ε. First, the flow values {x(B)|B ∈ B} are rounded to
lower rational numbers {x′(B)|B ∈ B} so that the total flow∑

B∈B x
′(B) > λ− ε. All these flows are then multiplied by

the least common multiple N of the denominators of the flows
x′(B);B ∈ B. Let the resulting values be n(B);B ∈ B. Let
K =

∑
B∈B n(B). Clearly, K > (λ−ε)N . Let us fix an order

in the embeddings B1, B2, . . . , B|B|. The protocol consists of
computation at the nodes and communication across the links
in a block/frame of N consecutive uses of the network. In
each frame, a link e can carry upto a total of Nc(e) symbols
in both directions. Our protocol will require sending integer

number of symbols in N uses of e in each direction. We
assume that this is possible as long as the total number of
symbols transmitted in both directions is at most Nc(e). We
assume that computation at nodes is done instantaneously, and
a frame sent across a link is available at the receiving node
at the end of the frame. The receiving node can forward the
data on another edge in the next frame or use it to compute
something else for transmission in the next or later frames.
In our protocol, the data stream generated at each source is

divided into blocks of K symbols, and the terminal computes
K number of corresponding function values in each frame.
Out of the K computations, the first n(B1) are carried out
using the embedding B1, the next n(B2) are carried out using
the embedding B2, and so on. In each direction on each link,
the transmissions corresponding to different embeddings are
ordered in the same order as the embeddings. Further, if uv
is in B(θi) as well as B(θj) (assume i < j without loss
of generality), then uv carries the data for (B, θi) first and
then the data for (B, θj). Formally, in each frame and in each
direction, a link uv in N carries a subframe, possibly empty,
of data for each (B, θ) pair, where B ∈ B, θ ∈ Γ. These
subframes are transmitted in the lexicographic order on (B, θ).
Since the subframes for different (B, θ) may be available at
u with different delay, these subframes will not correspond to
the same frame of source data. In the following, we explicitly
describe the subframes carried by uv in the k-th frame.
Let yk

B,θ denote the n(B) symbols of data of type θ
corresponding to the n(B) symbols of source data in the k-
th frame corresponding to the embedding B. That is, yk

B1,θ

denotes the n(B1) symbols of data of type θ corresponding to
the first n(B1) symbols of source data in the k-th frame, yk

B2,θ

denotes the n(B2) symbols of data of type θ corresponding to
the next n(B2) symbols of source data in the k-th frame, and
so on. In each frame, uv carries a subframe of data for each
(B, θ) pair. The subframe corresponding to (B, θ) is empty if
uv �∈ B(θ). Formally,

yk
uv,B,θ =

{
yk
B,θ if uv ∈ B(θ),

∅ otherwise.
This subframe corresponds to the k-th block of source data.

These subframes may be available at u with variable delay
due to variable path lengths from the sources along different
embeddings. Let us define the depth or delay d(u,B, θ) as

d(uv,B, θ)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ if uv �∈ B(θ)

0 if uv ∈ B(θ), u = si, θ = θi

1+max{d(wu,B, η)|η∈ Φ↑(θ), wu∈ B(η)}}
if uv ∈ B(θ), u = start(B(θ)),

(u, θ) �= (si, θi)

d(wu,B, θ) + 1 if (u, θ) �= (si, θi),

wu, uv ∈ B(θ).

(8)

So, the subframe yk
uv,B,θ , which has n(B) symbols if uv ∈

B(θ) and which corresponds to the k-the frame of source
data, will be transmitted in the (k + d(uv,B, θ))-th frame
on uv. The infinite value for uv �∈ B(θ) indicates that the
corresponding data does not flow through uv from u to v.
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Fig. 7. A network, a computation tree and two embeddings

Example 4: Consider the network and the computation
tree shown in Fig. 7. The edges of the computation tree are
labeled by the functions they carry, that is, X,Y, and X +Y .
For embedding B1, d(s1v,B1, X) = 0, d(s2v,B1, Y ) = 0,
d(vw,B1, X + Y ) = 1, d(wt,B1, X + Y ) = 2, and all other
delay values are ∞. For embedding B2, d(s1u,B2, X) = 0,
d(s2w,B2, Y ) = 0, d(uw,B2, X) = 1, d(wt,B2, X + Y ) =
2, and all other delay values are ∞.
The data transmitted in the k-th frame from u

to v on the link uv, in order of transmission, is
thus y

k−d(uv,B1,θ1)
uv,B1,θ1

, y
k−d(uv,B1,θ2)
uv,B1,θ2

, . . . , y
k−d(uv,B1,θ|Γ|)
uv,B1,θ|Γ| ,

y
k−d(uv,B2,θ1)
uv,B2,θ1

, y
k−d(uv,B2,θ2)
uv,B2,θ2

, . . . , y
k−d(uv,B2,θ|Γ|)
uv,B2,θ|Γ| , . . . ,

y
k−d(uv,B|B|,θ1)
uv,B|B|,θ1 , y

k−d(uv,B|B|,θ2)
uv,B|B|,θ2 , . . . , y

k−d(uv,B|B|,θ|Γ|)
uv,B|B|,θ|Γ| . It

is easy to see that the required flow of function values will
be computed on each embedding by this protocol. If the
communication starts with the frame number 0 and ends with
the M -th frame of source data, then the subframes are empty
for k < d(uv,Bi, θj) and for k > M + d(uv,Bi, θj). In
particular, a subframe yk−d(uv,Bi,θj)

uv,Bi,θj
is empty if uv �∈ Bi(θj).

Example 5: In the above example, suppose a solution of
the Embedding-Edge LP is x(B1) = 1 and x(B2) = 0.5.
Then N = 2, and n(B1) = 2, n(B2) = 1. Each data stream
is divided into frames of 3 symbols, out of which the first
2 symbols flow over B1 and the last symbol flows over B2.
In the k-th frame, the link uw carries only one non-empty
subframe for B2 containing one ‘X’ symbol. That subframe
yk−1
uw,B2,X

corresponds to the last symbol of the (k − 1)-th
frame of data. The link wt carries one subframe of two ‘X+Y ’
symbols for B1 and another subframe of one ‘X+Y ’ symbol
for B2. These subframes y

k−2
wt,B1,X+Y ,y

k−2
wt,B2,X+Y correspond

to the first two symbols of the (k − 2)-th data frame and the
last symbol of the (k − 2)-th data frame respectively.

To implement the protocol, any node u needs to know N ,
n(B) for all embeddings with non-zero n(B), and d(uv,B, θ)
and d(vu,B, θ) for all such embeddings B, θ ∈ Γ, v ∈ ℵ(u).
The values of d(uv,B, θ) can be found in O(nb|Γ|) time,
where b is the number of embeddings for which n(B) > 0. In
the following, we give the sequence of actions taken by any
node u.

1. The node maintains an input queue for each (B, θ) pair
for which d(vu,B, θ) <∞ for some v ∈ ℵ(u).

2. For the k-th frame received from v on the link vu, the
node u knows the ‘composition’, i.e., how many symbols for
which (B, θ) pair are received on that frame and in what order.
This is because the frame contains a non-empty subframe
corresponding to (B, θ) if and only if d(vu,B, θ) ≤ k.
Such a non-empty frame contains exactly n(B) symbols. The
transmission of all the non-empty frames is ordered in the
lexicographic ordering of (B, θ). For any received frame on
any link, u puts each received subframe in its respective input
queue. If u is a source, it also takes the K generated symbols
and creates the subframes of lengths n(B) for all the relevant
embeddings. Those are also placed in respective queues.
3. After queueing all the received and generated data in

the k-th frame, u prepares the data to be transmitted on
each link uv in the next, that is (k + 1)-th, frame of N
transmissions. The non-empty subframes for this transmitted
frame are those for which d(uv,B, θ) ≤ k + 1. If there is an
input queue for (B, θ), i.e., if such a data subframe is received
at u, then this subframe of n(B) symbols is taken from the
respective input queue. Otherwise, this subframe is generated
from the subframes from the queues for (B, η); η ∈ Φ↑(θ). If
such a queue for (B, η) contains multiple subframes of n(B)
symbols, then the oldest of them is taken. For instance, in our
example (Fig. 7), for constructing the subframe yk

wt,B2,X+Y

at w for the k-th frame, w takes a subframe from its input
queue (B2, X) and a subframe from the input queue (B2, Y )
and adds them. At this time, in the first queue, there is
only one subframe yk−2

uw,B2,X
which is used now. But in the

second queue, there are two subframes yk−1
vw,B2,Y

and yk−2
vw,B2,Y

available, out of which the older subframe yk−2
vw,B2,Y

is used.
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