Bandit Learning with Positive Externalities

Virag Shah, Jose Blanchet, Ramesh Johari
Management Science and Engineering Department, Stanford University

Positive externalities in online platforms

- A positive experience attracts more users of the same type.
- Aka Positive Externalities / Self-Reinforcement / Network Effects, etc.
- Thus, the arrival process is influenced by decisions.
- This makes simultaneous learning and decision-making more challenging.

What could go wrong?

- Suppose Blue users like Blue items (but not Red items)
- Suppose Red users like Red items (but not Blue items)
- Suppose user type not known upon arrival
- \(E[\text{Blue-Blue match reward}] > E[\text{Red-Red match reward}] \)

Main insights from our results

- There is a cost to being optimistic in the face of uncertainty as initial mistakes are amplified. UCB algorithm, in particular, fails miserably.
- It is possible to reduce the impact of transients by structuring the exploration procedure well.
- Once enough evidence is gathered, one may use the externalities to shift the arrivals to the reward-maximizing population.

Standard bandit setting:

- \(m \): Number of arms (items)
- \(T \): Time horizon; one user arrives per time step
- \(\mu_a \): Expected reward when arm \(a \) pulled (Bernoulli)
- \(a^* \): best arm
- \(T_a(t) \): number of times arm \(a \) pulled up to time \(t \)
- \(S_a(t) \): total reward at arm \(a \) up to time \(t \)
- Goal: maximize expected total reward (\(\Gamma_T \)).
- We study performance asymptotic in \(T \).

Positive externalities:

- Let \(\theta_a \) be initial “bias” of arm \(a \).
- We assume the user arriving at time \(t \) likes arm \(a \) independently with probability:
 \[
 \lambda_a(t) = \frac{f(\theta_a + S_a(t))}{\sum_a f(\theta_a + S_a(t))}.
 \]
- \(f \) is the externality function. We consider \(f(x) = x^\alpha, \alpha \geq 0 \).
- Here, \(\alpha \) determines the strength of the positive externality.
- \(\mathbb{P}(\text{reward at } t | \text{ arm } a \text{ pulled}) = \mu_a \) if user \(t \) likes \(a \), otherwise zero.

The baseline oracle

Since we study performance that is asymptotic in \(T \), natural to consider a baseline oracle that always chooses arm \(a^* \).

Proposition

The oracle earns

\[
\mathbb{E}[\Gamma_T] = \begin{cases}
\mu_{a^*} T - \Theta(1), & 0 < \alpha < 1 \\
\mu_{a^*} T - \Theta(T), & \alpha = 1 \\
\mu_{a^*} T - \Theta(1), & \alpha > 1
\end{cases}
\]

Intuition: Suppose \(\alpha = 1 \). We need \(\Omega(T) \) time to remove any initial bias toward suboptimal arms, since:

\[
\mathbb{P}(\text{user } t \text{ likes } a^*) \approx 1 - \frac{\sum_a \theta_a}{\Theta(T) + \sum_a \theta_a}.
\]

We measure performance of any algorithm against baseline oracle as expected regret: \(R_T = \mathbb{E}[\Gamma_T] - \mathbb{E}[\Gamma_T] \).

Regret Lower Bound:

<table>
<thead>
<tr>
<th>Theorem</th>
<th>(\alpha = 0)</th>
<th>(0 < \alpha < 1)</th>
<th>(\alpha = 1)</th>
<th>(\alpha > 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Bound</td>
<td>(\Omega(\log T))</td>
<td>(\Omega(T^{-\alpha}\log^a T))</td>
<td>(\Omega(\log^2 T))</td>
<td>(\Omega(\log T))</td>
</tr>
<tr>
<td>UCB</td>
<td>(\Omega(T))</td>
<td>(\Theta(T))</td>
<td>(\Theta(T))</td>
<td>(\Theta(T))</td>
</tr>
<tr>
<td>BE</td>
<td>(\Omega(\log T))</td>
<td>(\Theta(T))</td>
<td>(\Theta(T))</td>
<td>(\Theta(T))</td>
</tr>
<tr>
<td>BE-AE</td>
<td>(\Omega(\log T))</td>
<td>(\Theta(T))</td>
<td>(\Theta(T))</td>
<td>(\Theta(T))</td>
</tr>
</tbody>
</table>

Optimal Algorithm:

Balanced-Exploration (BE):
Suppose \(w_k = \ln k \) for each \(k \geq 1 \). Fix \(\tau = w_T \ln T \).
- For \(t \leq \tau \), pull the arm with lowest cumulative reward \(S_a(t - 1) \) (ties broken at random).
- For \(t > \tau \), pull the arm with highest mean reward \(S_a(\tau)/T_a(\tau) \) at time \(\tau \).

Balanced Exploration with Arm Elimination (BE-AE):
Dynamically eliminate poorly performing arms while balancing the exploration of the rest. (Needs knowledge of \(\alpha \) & \(\theta_a : 1 \leq a \leq m \).)

Full Picture

![Full Picture](image_url)

Figure 1: \(T = 30,000, \alpha = 1, m = 2, \mu_1 = 0.5, \mu_2 = 0.3, \theta_1 = \theta_2 = 1 \).

REC: Random-explore-then-commit.