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Positive externalities in online platforms

•A positive experience attracts more users of the same type.
•Aka Positive Externalities / Self- Reinforcement /
Network Effects, etc.

•Thus, the arrival process is influenced by decisions.
•This makes simultaneous learning and decision-making more
challenging

What could go wrong?

•Suppose Blue users like Blue items (but not Red items)
•Suppose Red users like Red items (but not Blue items)
•Suppose user type not known upon arrival
•E[ Blue-Blue match reward ] > E[ Red-Red match reward]

•Successful Red-Red matches made early on may trigger more Red
user arrivals.

•So the platform might learn to prefer Red-Red matches even if it
is suboptimal!

Main insights from our results

•There is a cost to being optimistic in the face of uncertainty as
initial mistakes are amplified. UCB algorithm, in particular, fails
miserably.

• It is possible to reduce the impact of transients by structuring the
exploration procedure well.

•Once enough evidence is gathered, one may use the externalities
to shift the arrivals to the reward-maximizing population.

Model

Standard bandit setting:
•m: Number of arms (items)
•T : Time horizon; one user arrives per time step
•µa: Expected reward when arm a pulled (Bernoulli)
•a∗: best arm
•Ta(t): number of times arm a pulled up to time t
•Sa(t): total reward at arm a up to time t
•Goal: maximize expected total reward (ΓT ).
•We study performance asymptotic in T .

Positive externalities:
•Let θa be initial “bias” of arm a.
•We assume the user arriving at time t likes arm a independently
with probability:

λa(t) = f (θa + Sa(t))∑
b f (θb + Sb(t))

.

• f is the externality function. We consider f (x) = xα, α ≥ 0.
Here, α determines the strength of the positive externality.

•P(reward at t| arm a pulled) = µa if user t likes a, otherwise zero.

The baseline oracle

Since we study performance that is asymptotic in T , natural to con-
sider a baseline oracle that always chooses arm a∗.

Proposition

The oracle earns E[Γ∗T ] =


µa∗T − Θ(T 1−α), 0 < α < 1
µa∗T − Θ(lnT ), α = 1
µa∗T − Θ(1), α > 1

Intuition: Suppose α = 1. We need Ω(log T ) time to remove any
initial bias toward suboptimal arms, since:

P(user t likes a∗) ≈ 1−
∑
a 6=a∗ θa

O(t) + ∑
a 6=a∗ θa

.

We measure performance of any algorithm against baseline oracle
as expected regret: RT = E[Γ∗T ]− E[ΓT ].

Main Results

Regret Lower Bound:

Theorem

Any feasible policy must have expected regret

RT =


Ω(T 1−α lnα T ), 0 < α < 1
Ω(log2 T ), α = 1
Ω(logα T ), α > 1

.

Optimal Algorithm:
Balanced-Exploration (BE):
Suppose wk = ln ln k for each k ≥ 1. Fix τ = wT lnT .
•For t ≤ τ , pull the arm with lowest cumulative reward Sa(t− 1)
(ties broken at random).

•For t > τ , pull the arm with highest mean reward Sa(τ )/Ta(τ ) at
time τ .

Balanced Exploration with Arm Elimination (BE-AE):
Dynamically eliminate poorly performing arms while balancing the
exploration of the rest. (Needs knowledge of α & (θa : 1 ≤ a ≤ m).)

Full Picture

α = 0 0 < α < 1 α = 1 α > 1

Lower bound Ω(log T ) Ω(T 1−α logα T ) Ω(log2 T ) Ω(logα T )

UCB O(log T ) Ω(T ) Ω(T ) Ω(T )

BE Õ(log T ) Õ(T 1−α logα T ) Õ(log2 T ) Õ(logα T )

BE-AE O(log T ) O(T 1−α logα T ) O(log2 T ) O(logα T )

Figure 1: T = 30, 000, α = 1, m = 2, µ1 = 0.5, µ2 = 0.3, θ1 = θ2 = 1.
REC: Random-explore-then-commit.


