Bandit Learning with Positive Externalities

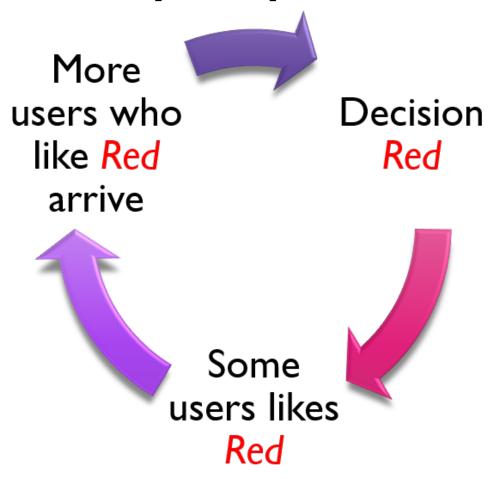
Virag Shah, Jose Blanchet, Ramesh Johari Management Science and Engineering Department, Stanford University

Positive externalities in online platforms

- A positive experience attracts more users of the same type.
- Aka Positive Externalities / Self- Reinforcement / Network Effects, etc.
- Thus, the arrival process is influenced by decisions.
- This makes simultaneous learning and decision-making more challenging

What could go wrong?

- Suppose Blue users like Blue items (but not Red items)
- Suppose Red users like Red items (but not Blue items)
- Suppose user type not known upon arrival
- $\mathbb{E}[$ Blue-Blue match reward $] > \mathbb{E}[$ Red-Red match reward]



- Successful Red-Red matches made early on may trigger more Red user arrivals.
- So the platform might learn to prefer Red-Red matches even if it is suboptimal!

Main insights from our results

- There is a cost to being optimistic in the face of uncertainty as initial mistakes are amplified. UCB algorithm, in particular, fails miserably.
- It is possible to reduce the impact of transients by structuring the exploration procedure well.
- Once enough evidence is gathered, one may use the externalities to shift the arrivals to the reward-maximizing population.

Model

Standard bandit setting:

- *m*: Number of arms (items)
- T : Time horizon; one user arrives per time step
- μ_a : Expected reward when arm *a* pulled (Bernoulli)
- a^* : best arm
- $T_a(t)$: number of times arm a pulled up to time t
- $S_a(t)$: total reward at arm a up to time t
- Goal: maximize expected total reward (Γ_T) .
- We study performance asymptotic in T.

Positive externalities:

- Let θ_a be initial "bias" of arm a.
- We assume the user arriving at time t likes arm a independently with probability:

$$\lambda_a(t) = \frac{f(\theta_a + \theta_b)}{\sum_b f(\theta_b)}$$

- f is the externality function. We consider $f(x) = x^{\alpha}, \alpha \ge 0$. Here, α determines the strength of the positive externality.
- $\mathbb{P}(\text{reward at } t \mid \text{arm } a \text{ pulled}) = \mu_a \text{ if user } t \text{ likes } a, \text{ otherwise zero.}$

The baseline oracle

Since we study performance that is asymptotic in T, natural to consider a baseline oracle that *always chooses arm* a^* .

Proposition

	$\int \mu_{a^*} T - \Theta$
The oracle earns $\mathbb{E}[\Gamma_T^*] = \langle$	$\mu_{a^*}T - \Theta$
	$\left(\mu_{a^*}T - \Theta\right)$

Intuition: Suppose $\alpha = 1$. We need $\Omega(\log T)$ time to remove any initial bias toward suboptimal arms, since:

 $\mathbb{P}(\text{user } t \text{ likes } a^*) \approx 1 - \frac{\sum_{a \neq a^*} \theta_a}{O(t) + \sum_{a \neq a^*} \theta_a}.$

We measure performance of any algorithm against baseline oracle as expected regret: $R_T = \mathbb{E}[\Gamma_T^*] - \mathbb{E}[\Gamma_T].$

 $S_a(t))$ $+ S_b(t)$)

 $\Theta(T^{1-\alpha}),$ $0 < \alpha < 1$ $\Theta(\ln T),$ $\alpha = 1$ $\Theta(1),$ $\alpha > 1$

Regret Lower Bour
Any feasible policy mu

$$R_{T} = \begin{cases} \Omega(T^{1-\alpha} \ln^{\alpha} T) \\ \Omega(\log^{2} T), \\ \Omega(\log^{\alpha} T), \end{cases}$$

Optimal Algorithm: Balanced-Exploration (BE):

- (ties broken at random).
- time τ .

Balanced Exploration with Arm Elimination (BE-AE):

Dynamically *eliminate poorly performing arms* while balancing the exploration of the rest. (Needs knowledge of α & ($\theta_a : 1 \leq a \leq m$).)

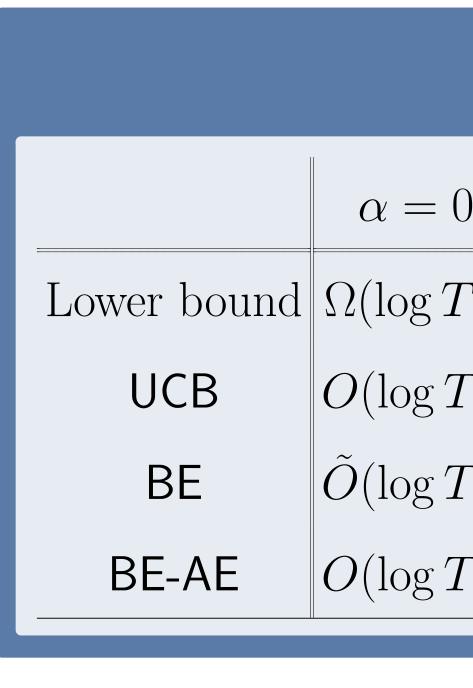


Figure 1: $T = 30,000, \alpha = 1$ REC: Random-explore-then-c

Stanford University

Main Results

nd:

Theorem

ust have expected regret $0 < \alpha < 1$ $\alpha = 1$ • $\alpha > 1$

Suppose $w_k = \ln \ln k$ for each $k \ge 1$. Fix $\tau = w_T \ln T$.

• For $t \leq \tau$, pull the arm with lowest cumulative reward $S_a(t-1)$

• For $t > \tau$, pull the arm with highest mean reward $S_a(\tau)/T_a(\tau)$ at

Full Picture				
)	$0 < \alpha < 1$	$\alpha = 1$	$\alpha > 1$	
``)	$\Omega(T^{1-\alpha}\log^{\alpha}T)$	$\Omega(\log^2 T)$	$\Omega(\log^{\alpha} T)$	
[]	$\Omega(T~)$	$\Omega(T$)	$\Omega(T$)	
.)	$\tilde{O}(T^{1-lpha}\log^{lpha}T)$	$ ilde{O}(\log^2 T \)$	$ ilde{O}(\log^{lpha}T)$	
[]	$O(T^{1-\alpha}\log^{\alpha}T)$	$O(\log^2 T$)	$O(\log^{lpha}T)$	

	•		
huite		Seconds:	
Ξ	BE-AE Algoi		UCB
l, <i>m</i> =	·).5, $\mu_2 = 0$.	3, $\theta_1 = \theta_2 =$