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Unstructured P2P Networks

Virag Shah, Gustavo de Veciana, and George Kesidis

Abstract—Finding a document or resource in an unstructured

peer-to-peer network can be an exceedingly difficult problem. In

this paper we propose a query routing approach that accounts for

arbitrary overlay topologies, nodes with heterogeneous processing

capacity, e.g., reflecting their degree of altruism, and heteroge-

nous class-based likelihoods of query resolution at nodes which

may reflect query loads and the manner in which files/resources

are distributed across the network. The approach is shown to be

stabilize the query load subject to a grade of service constraint,

i.e., a guarantee that queries’ routes meet pre-specified class-

based bounds on their associated a priori probability of query

resolution. An explicit characterization of the capacity region

for such systems is given and numerically compared to that

associated with random walk based searches. Simulation results

further show the performance benefits, in terms of mean delay,

of the proposed approach. Additional aspects associated with

reducing complexity, estimating parameters, and adaptation to

class-based query resolution probabilities and traffic loads are

studied.

Index Terms—peer-to-peer, search, stability, backpressure, ran-

dom walk.

I. INTRODUCTION

Peer-to-peer (P2P) systems continue to find increasing and
diverse uses as a distributed, scalable and robust framework
to deliver services, e.g., file sharing, video streaming, ex-
pert/advice sharing, sensor networks, databases, etc. One of the
basic functions of such systems is that of efficiently resolving
queries or discovering files/resources. This is the problem
addressed in this paper.

There is a considerable body of work exploring the de-
sign of efficient search/routing mechanisms in structured and
unstructured P2P networks, see e.g., [1]–[10]. In structured
networks, peers/files/resources are organized to form overlays
with specific topologies and properties. Search mechanisms
that perform name resolution based on distributed hash table
(DHT) coordinate systems can be devised to achieve good
forwarding-delay properties, see e.g., [2]. In such systems,
the query traffic may depend on how keys are assigned. So,
load balancing requires proactive/reactive assignments of keys
to peers and data/service objects, e.g., [11], and possibly
exploiting network hierarchies [10]. Fundamentally, in such
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networks the difficulty of search/discovery is shifted to that
of maintaining the structural invariants required to achieve
efficient query resolution particularly in dynamic settings with
peer/content churn or when reactive load balancing is required.

Unstructured networks, by contrast, are easier to setup and
maintain, but their mostly ad hoc overlay topologies make re-
alizing efficient searches challenging. In a purely unstructured
P2P network, a node only knows its overlay neighbors. With
such limited information, search techniques for unstructured
networks have mostly been based on limited-scope flooding,
simulated random walks, and their variants [3]–[5]. Much
research in this area has focused on evaluating these search
techniques based on the contact time, i.e., number of hops
required to find the target, using the spectral theory of Markov
chains on (random) graphs, see e.g., [4]–[6]. Unfortunately
in heterogenous settings where service capacity or resolution
likelihoods vary across peers, such search techniques perform
poorly under high query loads.

The inefficiencies of purely unstructured networks can be
partially addressed by hybrid P2P systems, e.g., FastTrack
and Gnutella2. Such systems use a simple two-level hierarchy
where some peers serve as ‘super-peers.’ These are high degree
nodes which are well connected to other super-peers and to
a set of subordinate nodes in a hub-and-spoke manner [12].
Though such systems have advantages in terms of scalability,
proposed search techniques are still based on variants of
flooding and random walks.

The work of [7] proposes an approach where peers cache
the outcomes of past queries as informed by reverse-path
forwarding. The idea is to learn, from past experience, the best
way to forward certain classes of queries, i.e., to intelligently
“bias” their forwarding decisions by correlating classes of
queries with neighbors who can best resolve them. This
approach involves considerable overhead, is not load sensitive,
and has not yet given guarantees on performance.

Although, as will be clear in the sequel, our results are
not exclusive to hybrid P2P networks, these will serve as the
focus of the paper. We assume that each super-peer contributes
a possibly heterogenous amount of processing resource for
resolving queries for the network - incentives for doing so are
outside of the scope of this paper, see e.g., [8], [9]. Super-peers
serve their subordinates by resolving queries, or forwarding
them to other super-peers. Super-peers can resolve queries by
checking the files/resources they have, as well as those of their
subordinate community. In our approach we also introduce a
notion of query classes. These might, for example, represent
types of content, such as music, films, animations, documents,
or some other classification of files/resources relevant to the
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application at hand. The idea is that such a grouping of queries
into classes can be used as a low overhead approach to make
useful inferences on how to relay queries.

Given a hybrid P2P topology and query classification, we
propose a novel query resolution mechanism which stabilizes
the system for all query loads within a ‘capacity region’, i.e.,
the set of loads for which stability is feasible. Essentially, our
policy is a biased random walk where forwarding decision
for each query is based on instantaneous query loads at
super-peers. To balance the load across heterogeneous super-
peers, the policy aims at reducing the differential backlog at
neighboring super-peers, while taking into account the class
and history information to improve the query’s resolvability.

Our policy draws upon standard backpressure routing algo-
rithm, which is used to achieve stability in packet switching
networks, e.g., see [13], [14]. In previously studied back-
pressure based systems, the goal is to deliver packets to the
corresponding destinations. By contrast, our aim is to provide a
grade of service in resolving queries with no fixed destinations.
The random nature of the location of query resolution in
the network leads us to deal with expected queue backlog
instead of current queue backlog. Further, in P2P systems, the
probability of resolution of a query at a given node depends
on the query’s history, i.e., the path that led it to the current
node. These characteristics of P2P systems are not captured in
previous works on backpressure by Tassiulas and Ephremides
[13] and the subsequent enhancements, see e.g., [14]–[21].

To summarize, our approach differs from standard work on
backpressure in that we incorporate the following different
issues that arise in P2P search: (a) we model the uncertainty in
the locations where a query may be resolved depending upon
where the file/object of interest are placed, (b) we guarantee
a grade of service to each query under such uncertainties, (c)
we incorporate the information about a query’s resolvability
available through the knowledge of its history.

We also propose several natural enhancements to our back-
pressure based query routing policy. By contrast to previous
works on backpressure such as [15]–[19] and citations therein,
these enhancements are also driven by P2P query routing
setting. For example, in order to reduce delays previous works
develop algorithms which prefer shorter paths over longer ones
by explicitly accounting for the hop length of various paths
[15], or by finding good routes towards destinations using
artificial ‘shadow’ queues which operate at larger loads to
build gradients [17]. In our P2P query routing setting the
destination of a query is not known a priori. We reduce
delays via a simple ‘work conserving’ policy which efficiently
uses available resources in routing queries at each node. We
further propose a state aggregation policy aimed at reducing
the complexity arising from the need to track the history of
currently unresolved search queries.

Our Contributions. The main contributions of this paper
are as follows. We propose a query forwarding mechanism
for unstructured (hybrid) P2P networks with the following
properties.
1. It dynamically accounts for heterogeneity in super-peer’s
‘service rate,’ reflecting their altruism, and query loads across
the network. To the best of our knowledge, this is the first

Query 1 of class c

Query 2 of class c

Query 1

Query 2 evicted
History/path H of query 2

⌧ = (c,H)
as �(⌧) > �c

resolved

Fig. 1. A network of super-peers G = (N ,L). Queries of a given class
traverse potentially different routes. A query either gets resolved or gets
evicted from the network upon receiving a grade of service.

work to rigorously account for such heterogeneity in devising
a search mechanism for P2P networks.
2. It is based on classifying queries into classes. This classi-
fication serves as a type of name aggregation, which enables
nodes to infer the likelihoods of resolving class queries, which,
in turn, are used in learning how to forward queries.
3. Our approach is fully distributed in that it involves infor-
mation sharing only amongst neighbors, and achieves stability
subject to a Grade of Service (GoS) constraint on query
resolution. The GoS constraint corresponds to guaranteeing
that each query class follows a route over which it has a
reasonable ‘chance’ of being resolved.
4. We provide and evaluate several interesting variations on
our stable mechanism that help significantly improve the delay
performance, and further reduce the complexity making it
amenable to implementation. Specifically, we formally show
that backpressure with aggregated queues, where aggregation
is based on queries’ histories, is stable for fully connected
super-peer networks. This provides a basis for substantially
reducing complexity by approximations, e.g., in the case
where content is randomly placed.

Organization. In Section II, we set up our basic system
model. We characterize the stability region of the network
and provide the stable protocol and several modifications in
Section III. We provide some numerical results in Section IV.
We discuss estimation of query resolution probability and ways
to reduce implementation complexity in Section V.

II. SYSTEM MODEL

The overlay network is represented by a directed graph G =

(N ,L) where N (nodes) are the super-peers and L ⇢ N ⇥N
are overlay links, which are assumed to be symmetric, i.e.,
if (i, j) 2 L then (j, i) 2 L. We let N(i) denote the set
of neighbors of super-peer i. Note that subordinate peers of
the hybrid network are not explicitly represented, but simply
associated with the super-peer to which they are connected.
We assume that time is slotted, and each super-peer i has an
associated service rate µi, corresponding to positive integer
number of queries it is willing to resolve/forward in each slot.

We assume that super peers keep a record of files/resources
available at subordinate peer. This information is communi-
cated to super peers when a subordinate peer joins a super peer.
Subordinate peers may initiate a query request at a super peer,
but do not participate in forwarding or query resolution. Let
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R be the set of all files/resources that might be queried on the
network, and C a predefined set of resource classes. For each
c 2 C, let Rc ⇢ R be the files/resources belonging to class c.
For each c 2 C and i 2 N , let Rc

i be the set of files/resources
in class c which are available at super-peer i or its subordinate
peers. Let Ai(t) be a random variable denoting the number of
queries arriving at super-peer i or its subordinates at time t and
⌫r denote the probability a query is for file/resource r 2 R. We
say a query is a class c query if the resource it is seeking is in
Rc. Let Ac

i (t) denote the number of class c queries that arrive
at super-peer i or its subordinates at time t. We assume these
random variables are rate ergodic, with finite second moments
and independent across slots, thus we have well defined arrival
rates denoted by � , (�ci : 8i 2 N , c 2 C) where �ci denotes
the mean arrival rate of class c queries at node i.

If a class c query at node i cannot be resolved it may be
forwarded to one of its neighbors. The likelihood a node can
resolve such a query depends not only on its class but also
its history, i.e., the set of nodes it visited in the past. Note
that the history is not ordered. For example, suppose 3 nodes
in a network partition files/resources Rc associated with class
c. If two of these nodes attempted and failed in resolving a
given class c query then it will for sure be resolved at the third
node. In other contexts, if a search for a particular media file
failed at many nodes, it is more likely that the file is rare, and
the conditional likelihood that it is resolved at the next node
might lower.

Notation for tracking history and class of a query: We
capture such behavior for different classes by keeping track
of the history of a query, i.e., the subset of nodes already
visited, or equivalently an element of H which is the powerset
of N . Note, history captures only the set of visited nodes and
not the order in which they are visited. The ‘type’ ⌧ of a
query keeps track of both, its class c and its history H , i.e.,
⌧ = (c,H) 2 T , C ⇥ H. Let c(⌧) = c and H(⌧) = H
represent class and history of the associated query.

Further, we let ei(⌧) represent the resulting type once
a query of type ⌧ is serviced by node i, i.e., ei(⌧) =

(c(⌧), H(⌧) [ {i}). Also, we let E�1
i (⌧) denote the inverse

set of ei(⌧), i.e., E�1
i (⌧) = {(c(⌧), H) : H [ {i} = H(⌧)}.

E�1
i (⌧) captures the set of all possible histories H that lead to

⌧ . Note that, since history H is unordered, if a query revisits
a node its history is unchanged. Similarly, if a query revisits a
node its type is unchanged, i.e., if i 2 H(⌧) then ei(⌧) = ⌧ .

Query Resolution Probability: We model the probabilities
of resolving queries across the network by a vector p , (p⌧i :

i 2 N , ⌧ 2 T ), where p⌧i denotes the probability that a typical
query of class c(⌧) is resolved by i conditioned on failing
attempts by the nodes in H(⌧). A node i can easily estimate
p⌧i by keeping track of the fraction of queries of type ⌧ that
it is able to resolve. In the sequel it will be useful to formally
relate these quantities to, (1) ⌫r the fractions of queries for
resource r 2 R, (2) Rc the resources of class c 2 C, and
(3) Rc

i the resources in class c held by node i. Indeed the

TABLE I
A SUMMARY OF NOTATIONS

G = (N ,L) Network represented by graph G with nodes N
representing super-peers and L representing overlay
links

N(i) Neighbors of node i
µi service rate/altruism of node i

c; C A class of resources; set of all classes
R; Rc; Rc

i Set of all files/resources; set of resources belonging
to class c; set of resources in class c available at
super-peer i

Ai(t); A
c
i (t) Arrival process of queries at node i; arrival process

of class c queries at node i
�c
i ; � Arrival rates; � = (�c

i : 8i 2 N , c 2 C)
⌫r popularity of resource r

H; ⌧ History: set of visited nodes; query type: ⌧ = (c,H)
ei(⌧); E�1

i (⌧) E�1
i (⌧) = (c(⌧), H(⌧)[{i}); inverse set of ei(⌧)

p⌧i Probability that a query of type ⌧ exits the network
upon service at node i, either due to query resolution
or due to eviction upon receiving the grade of service

�(⌧) a priori probability that a typical query of class c(⌧)
is resolved at a node in H(⌧)

�c Grade of service: a query is evicted if �(⌧) > �c
Q⌧

i (t); Q(t) Number of waiting queries of type ⌧ at node i in
slot t; Q(t) = (Q⌧

i (t) : i 2 N , ⌧ 2 T )
⇡⌧
ij(t); ⇡(t) Probability that a query served by node i at time t be-

longs to type ⌧ , and is forwarded to node j 2 N(i),
if unresolved; ⇡(t) = (⇡⌧

ij(t) : (i, j) 2 L, ⌧ 2 C)
µ⌧
ij(t); µ(t) µ⌧

ij(t) = µi⇡
⌧
ij(t); µ(t) = (µ⌧

ij(t) : (i, j) 2
L, ⌧ 2 T )

f⌧
ij ; f Flow of type ⌧ from node i to node j; f =⇣

f⌧
ij : (i, j) 2 L, ⌧ 2 T

⌘

⇤; ⇤0 Capacity region; interior of capacity region

probability a type ⌧ query is resolved at i is given by

p⌧i =

P

r ⌫r1
n

r 2 Rc(⌧)
i

o

1
n

r /2 [j2H(⌧)R
c(⌧)
j

o

P

r ⌫r1
�

r 2 Rc(⌧)
 

1
n

r /2 [j2H(⌧)R
c(⌧)
j

o , (1)

i.e., the ratio of the sum demand, i.e., ⌫r, for type ⌧ class
c(⌧) files/resources which are present at node i and were not
present at nodes in its history H(⌧) and that for c(⌧) resources
that were not present at nodes in its history H(⌧).

Recall, type of a query does not change upon revisits.
Further, from (1), if a query has already visited a node i
in past, i.e., if i 2 H(⌧), then its probability of resolution
at node i, i.e., p⌧i , is equal to 0. This is intuitive, since if a
query has already visited a node and it is still not resolved
then the corresponding file is not present at the node. This
further reinforces the history dependent nature of a query’s
resolvability.

Grade of Service on Query Resolution: A standard mecha-
nism adopted in P2P systems is to evict a query from the
network if it is unresolved after having traversed some fixed
number of nodes, i.e., TTL threshold. Unfortunately, while
this limits resource usage, it does not translate to a guaranteed
grade of service on query resolution. We propose a different
approach. Let �(⌧) be a priori probability that a typical query
of class c(⌧) is resolved upon visiting nodes in H(⌧), i.e.,

�(⌧) =

P

r ⌫r1
n

r 2 [j2H(⌧)R
c(⌧)
j

o

P

r ⌫r1
�

r 2 Rc(⌧)
 (2)
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the ratio of weighted class c(⌧) files/resources seen in H(⌧)
over the total weighted documents in Rc(⌧). We propose
removing a query from the network if �(⌧) � �c(⌧) where
�c is the design parameter determining the GoS for class
c. This guarantees that a typical class c query would have
seen a chance of at least �c of being resolved. Other possible
GoS metrics will be discussed in the Section V-C. Note �(⌧)
does not depend on the path traversed by the query, but can
be computed recursively as a query traverses a sequences
of nodes, e.g., if H(⌧) = {i1, i2, . . . , ik}, then, �(⌧) =

1�⇧k
l=1(1� p⌧lil ), where ⌧l = (c(⌧), {i1, i2, . . . , il�1}).

For our purposes we model such an exit strategy directly
in p itself. Specifically, if at node i we have �(⌧) � �c(⌧),
then we set p⌧i = 1. Under this model a query of type ⌧ exits
the network after service at node i irrespective of the nodes’
success or failure in resolving it since the GoS requirement
has been satisfied.

To summarize, the vector p does not simply reflect class-
based probabilities of query resolution for various types of
queries at the nodes but also the GoS requirement, or eviction
criterion, implemented by underlying query resolution proto-
col.

Network State and Routing Policies: We assume that ar-
rivals occur at the end of each slot and let Q⌧

i (t) denote
number of queries of type ⌧ waiting for service at node i
at the start of slot t. Q(t) , (Q⌧

i (t) : i 2 N , ⌧ 2 T )

represents the network’s state at the start of slot t. Queries are
served sequentially in each slot according to some ‘policy’ as
described below. Note that ‘service’ here includes both, the
attempt to resolve the query as well as determining a routing
(forwarding) strategy for the queries. Queries are forwarded
at the end of the slot.

Recall that each super-peer node i has an associated service
(altruism) rate1 µi which the policy can use in each slot of as
follows:

1) It chooses no more than µi queries currently at node i
for service on the slot;

2) If a query is unresolved at node i, it determines which
neighbor j 2 N(i) the query should be forwarded to.

We say a policy is ergodic if sample paths of Q(t) are ergodic
and a steady state exists.

State dependent randomized policy: Given that Q(t) =

q(t), a randomized policy does the following for each node i:
1) It randomly chooses the types of the µi queries to be

served. Queries of those types are resolved on a first come
first serve basis.

2) For each unresolved query, it randomly chooses a neigh-
bor j 2 N(i) to which it should be forwarded.

Such a policy depends on specifying a vector ⇡(t) = (⇡⌧ij(t) :
(i, j) 2 L, ⌧ 2 C) for each slot t, where ⇡⌧ij(t) is the
probability that a query, among µi queries served at node
i, belongs to type ⌧ , and is forwarded to node j, if unre-
solved. In general ⇡⌧ij(t) can depend on q(t) and/or t. Also,

1We have assumed that µi is an integer. One way to deal with fractional
service rate is to keep service random. For example, µi = 2.6 can be modeled
as randomly choosing 2 and 3 with probability 0.4 and 0.6 respectively,
in each slot. All the results herein hold invariably with some additional
technicalities in the proofs.

1 �P

j,⌧ ⇡
⌧
ij(t) is the probability that no type is chosen, in

which case a blank query is served. These probability vectors
determine the service rate allocations at each node. Indeed, let
µ(t) , (µ⌧ij(t) : (i, j) 2 L, ⌧ 2 T ), where, µ⌧ij(t) , µi⇡

⌧
ij(t).

Thus, determining ⇡⌧ij(t) is equivalent to determining µ⌧ij(t).
Further, define µ⌧i (t) ,

P

j µ
⌧
ij(t) for all i 2 N and ⌧ 2 T .

Note once again that, in general, the service rates µ⌧i (t) may
be function of q(t) and/or t.

For simplicity, we shall refer to such policies as randomized
policies. Note that these include policies where the state
deterministically determines the query-type to be serviced and
the forwarding strategy at each node. Indeed this corresponds
to the case where ⇡⌧ij(t) = 1 for some j 2 N(i) and ⌧ 2 T ,
and 0 for others.

A randomized policy is called fixed if ⇡(t) does not depend
on t or q(t).

III. STABLE QUERY FORWARDING POLICY

In this section, we will propose a query scheduling and
forwarding policy that ensures the GoS for each class, is
distributed, easy to implement, and is stable. We begin by
defining the stability for such networks and the associated
capacity region.

A. Stability & Capacity Region
We shall use the definition of network stability given in [14],

which is general in that it includes non-ergodic policies.
However for ergodic policies it is equivalent to standard of
notions of stability given in [13], [22]. For a given queue
process Q⌧

i (t), let g⌧i (↵) denote its ‘overflow’ function

g⌧i (↵) = lim sup

t!1

1

t

t
X

t0=1

1{Q⌧
i (t

0
) > ↵} (3)

associated with the fraction of time Q⌧
i (t) exceeds ↵.

Definition 1. A queue Q⌧
i (t) is stable if g⌧i (↵) ! 0 almost

surely as ↵ ! 1. The network is stable if each queue is
stable.

Next we define the ‘capacity region’ for query loads on our
network.

Definition 2. The capacity region ⇤ is set of query arrival
rates �, such that there is a feasible solution to the fol-
lowing linear constraints on f ,

�

f⌧ij : (i, j) 2 L, ⌧ 2 T �:
Capacity constraints: for all i 2 N

X

j,⌧

f⌧ji +
X

c

�ci  µi; (4)

Flow conservation constraints with resolution at nodes: for
all i 2 N and ⌧ 2 T
X

j

f⌧ij =
X

⌧ 02E�1
i (⌧)

(1� p⌧
0

i )(

X

j

f⌧
0

ji + �c(⌧
0)

i 1{H(⌧ 0) = ;});

(5)
Non-negativity constraints: for all (i, j) 2 L and ⌧ 2 T

f⌧ij � 0. (6)
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We refer to f as flow variables, where (4) ensures that the
incoming flow to a node is less than its service rate and (5)
ensures that the total flow of types ⌧ 0 2 E�1

i (⌧) reaching i
which is not resolved at i (left hand side) equals the flow of
type ⌧ leaving node i. These are different than the standard
multicommodity flow conservation laws in the sense that our
conservation equations are designed to capture the following
aspects arising in P2P search systems: (a) history dependent
probability of query resolution at each node, (b) updates in
‘types’ of queries as they get forwarded to different nodes,
(c) computing the quality of service received by query via
its history and designing an appropriate exit strategy upon
receiving enough service.

Recall, ⇤0 denote the interior of ⇤. The following theorem
proved in Appendix A makes the link between the capacity
region and stabilizability of the network.

Theorem 1. (Capacity Region)
(a) If for a given arrival rate vector � there exists a state

dependent randomized policy under which the network is
stable, then � 2 ⇤.

(b) If � 2 ⇤

0, then there exists a fixed randomized policy
under which the network is stable.

Note that this result is general in that even full knowledge
of future events does not expand the region of stabilizable
rates. Also, while our focus, for now, is on policies where p
corresponds to the conditional probabilities of query class res-
olutions, subject to the GoS modification, other modifications
could be made. The only restrictions on p for above result
is that each query should eventually leave the network, and
revisits to nodes (while allowed) have a zero probability of
resolving the query.

B. Stable policies
In principle, given � 2 ⇤0, a feasible set of network flows

can be found and, as shown in the proof of Theorem 1.b,
this can be used to devise a fixed randomized policy which
stabilizes the network. However, such a centralized policy may
not be practically feasible, moreover arrival rates � may not be
known a priori. Further, designing a stable search algorithm
is now a challenge since, while the routing decisions are to
be based on instantaneous queue loads at the neighbors, the
decisions themselves affect the type/queue to which a query
belongs. Below we develop a distributed dynamic algorithm
where each node i makes decisions based on its queue states
and that of its neighbors and only needs to know (or estimate)
p⌧i , ⌧ 2 T , i.e., local information.

Basic Backpressure Algorithm: For each t, given Q(t) =

q(t) each node, say i, carries out the following steps:
1) For each neighbor j 2 N(i) it determines

w⇤
ij(t) = max

⌧2T

n

q⌧i (t)� qei(⌧)j (t)(1� p⌧i )
o

⌧⇤ij(t) = argmax

⌧2T

n

q⌧i (t)� qei(⌧)j (t)(1� p⌧i )
o

2) It finds j⇤i = argmaxj2N(i) w
⇤
ij(t), and lets ⌧⇤i = ⌧⇤ij⇤i .

3) It serves min[q
⌧⇤
i

i , µi] queries of type ⌧⇤i , and forwards

the unresolved ones to node j⇤i . This is equivalent to a
state dependent randomized algorithm with µ⇤⌧

ij (t) equal to
µi when j = j⇤i and ⌧ = ⌧⇤i , and 0 otherwise, in slot t.

Note that the weights used in above algorithm for each
link (i, j) are different from those used in traditional multi-
commodity backpressure algorithm [13], [14], where weights
are found using differences between queue backlogs of each
commodity at i and j. Here, instead, for each type ⌧ , one takes
difference of the queue backlog at i from that of ‘expected’
queue backlog a query of type ⌧ would see at j if forwarded by
node i to j. To see this, observe that query of type ⌧ would get
resolved with probability p⌧i and would thus leave the network.
But, with probability (1 � p⌧i ) it would not be resolved, and
would see queue backlog of qei(⌧)j at node j. Thus, the weight
taken is w⇤

ij(t) = max⌧2T

n

q⌧i (t)� qei(⌧)j (t)(1� p⌧i )
o

.

Theorem 2. The above backpressure algorithm is achieves
stability for any � 2 ⇤0.

The proof of the above theorem is provided in Appendix B.
The proof handles the evolution of query types and the
randomness in resolution of queries by incorporating expected
queue backlogs into Lyapunav drifts. The basic backpressure
algorithm, though stable, is highly wasteful. In a slot, each
node i serves only the queue with highest relative backlog. In
case that particular queue has less than µi queries waiting in
it, the spare services are provided to blank queries, even if the
other queues are non-empty. We now devise a more efficient
protocol that serves blank queries only when all the queues
are non-empty and is thus work-conserving; and is stable as
well. As we shall see, this provides large delay benefits over
the above basic backpressure algorithm.

The idea is, if the number of queries in the queue with
highest relative backlog is less than total service rate, the
work conserving policy serves the queries in second highest
backlogged queue, and so on, until either total of µi queries
are served or all the queues are empty. We formally define the
algorithm as follows.

Work Conserving Back-pressure Policy: Given Q(t) = q(t),
each node i does the following.
1) It finds the least positive integer k such
that

Pk
l=1 max

(l)
⌧,j

n

q⌧i (t)� qei(⌧)j (t)(1� p⌧i )
o

�
min [µi,

P

⌧ q
⌧
i (t)], where max

(l)
⌧ refers to the lth largest

value.
2) For l = 1, 2, . . . , k, for each j 2 N(i), it finds

w⇤l
ij (t) = max

⌧

(l)
⇣

q⌧i (t)� qei(⌧)j (t)(1� p⌧i )
⌘

⌧⇤lij (t) = argmax

⌧

(l)
⇣

q⌧i � qei(⌧)j (t)(1� p⌧i )
⌘

.

3) For l = 1, 2, . . . , k, it finds j⇤li = argmaxj w⇤l
ij (t) and lets

⌧⇤li = ⌧⇤lij (t) for j = j⇤li .
4) For l = 1, . . . , k � 1, it serves all the queries of type ⌧⇤li
and forwards the unresolved queries to node j⇤li . For queries
of type ⌧⇤ki , it serves min

⇣

q
⌧⇤k
i

i (t), µi �
Pk�1

l=1 q
⌧⇤l
i

i (t)
⌘

of
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Fig. 2. Boundaries of capacity regions for the stable backpressure algorithm
and random walk policy for the 3 cases.

them on an FCFS basis and forwards unresolved ones to j⇤ki .

Corollary 1. The above work conserving backpressure policy
is achieves stability for any � 2 ⇤0.

The proof is provided in Appendix C.

IV. NUMERICAL RESULTS AND SIMULATIONS

In this section, we numerically evaluate the gains in the ca-
pacity region achievable by our stable backpressure algorithms
versus that a baseline random walk policy. We consider a
fully connected network with 6 nodes. Let N = {1, 2, . . . , 6}.
Since a super-peer network is designed to be highly connected
in practice, a fully connected network might be a good
representative of the practice. We consider two query-classes,
c1 and c2. We assume that arrival rates for a given class is
same at all the nodes, say �1 for class c1 and �2 for class c2.
This reduces the dimension of the capacity region from 12 to
2, making it easier to study. Further, the parameters for the
GoS, viz., �c, are set to 0.9 for both the classes.

In the baseline random walk policy, upon service, each node
forwards an unresolved query to one of the neighbors chosen
uniformly at random. Since, in a fully connected network,
allowing queries to revisit nodes provides no advantages,
queries are forwarded to only those nodes which are not
previously visited. As with backpressure, whose achievable
capacity region is given by Definition 2, we can characterize
the achievable capacity region for the random walk policy. It
is the set of arrival rates � that satisfy the constraints (4)-(6),
along with additional constraints that ensure that the outgoing
flows of each type at each node are uniformly divided among
unvisited nodes. Formally, these are given by,
Random-forwarding constraints: for all i 2 N , ⌧ 2 T and for
all j1, j2 2 N(i) and j1, j2 /2 H(⌧), f⌧ij1 = f⌧ij2 .
Constraints for avoiding revisits: for all i 2 N , ⌧ 2 T and
j 2 H(⌧), f⌧ij = 0.
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Basic backpressure
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Fig. 3. Delay performance of the backpressure algorithms and random walk
for Case 1.

We consider the following three cases, see Fig. 2.
Case 1: µi = 10 for all i 2 N . For all the types of class c1,
p⌧i = 0.6 for i 2 {1, 2, 3} and p⌧i = 0.1 for the remaining
nodes. For all the types of class c2, p⌧i = 0.1 for i 2 {1, 2, 3}
and p⌧i = 0.6 for the remaining nodes.
Case 2: µi = 10 for all i 2 N . p⌧i = 0.5 for all i 2 N and
⌧ 2 T .
Case 3: µi = 15 for i 2 {1, 3, 5} and µi = 5 for the remaining
nodes. p are same as in Case 1.

We assume the same exit strategy for both policies to ensure
the same GoS, which is captured in the vector p itself – see
Section II. Figure 2 shows significant capacity gains for Cases
1 and 3. It also shows that, when µi and p⌧i are homogenous
over nodes, as in Case 2, the random walk is sufficient to
balance the load among the nodes and achieve capacity, a fact
that can be easily proven analytically as well. However, with
heterogeneity in nodes’ query resolution probability, i.e., how
they store the files/resources of various classes, backpressure
significantly outperforms the random walk. For example, in
Case 1, when �1 and �2 are constrained to be equal, a
28% gain in capacity is achieved. Further, for Case 3, the
gain along the direction �1 = �2 of the capacity region
increases to 68%. This shows that the advantages of load
balancing by backpressue are significant, particularly when
there is heterogeneity among nodes in their service rates, i.e.,
their altruism, as well.

We now compare the delay performance of the backpressure
algorithms and random walk under Case 1. Fig. 3 exhibits
the mean delay as a function of the arrival rates for both
the classes, keeping the arrival rates equal. It confirms our
observation that the basic backpressure algorithm is stable, but
wasteful as it is not work conserving. The work conserving
algorithm significantly improves performance. Performance
is further improved by constraining queries from revisiting
nodes. With this modification, the backpressure algorithm
has excellent delay performance as compared to the random
walk policy with the same revisit constraints and same GoS,
especially at higher loads.



7

V. IMPLEMENTATION AND COMPLEXITY

A. Estimating query resolution probabilities

So far we have assumed that resolution probabilities for
queries of different types are known. In practice they can be
easily estimated. In order to ensure unbiased estimates can be
obtained at each node, suppose a small fraction ✏ of all queries
is marked ‘RW’, forwarded via the random walk policy with
a large TTL, and given scheduling priority over other queries.
With a sufficiently large TTL this ensures that each node will
see a random sample of all query and types it could see and
thus allow for unbiased estimates. All queries which are not
marked ‘RW’ are treated according to our backpressure policy
based on the estimated query resolution probabilities. A node i
receives O(t✏) ‘RW’ marked samples in time t. Thus, standard
deviation in the estimation error is O(

q

1
✏t ). Thus the error is

small for large enough t. If the contents are static, one may
discontinue the estimation process after large enough time t,
in which case the time-averaged performance of the policy
remains unchanged.

Alternatively, to allow persistent tracking of changes in
resolution probabilities, we may estimate the query resolution
probabilities via samples provided from a control algorithm,
without using a separate unbiased random walk. The conver-
gence of estimation and stability of the system can be jointly
obtained via stochastic approximation framework [23] under
time scale separation between content dynamics and search
dynamics.

B. Reducing complexity

Not unlike standard backpressure-based routing our policies
suffer from a major drawback: each node needs to share the
state of its potentially large number of non-empty queues
with its neighbors. For backpressure-based routing the number
of queues per node corresponds to the number of flows
(commodities) in the network. In our context, the number
of queues per node corresponds to number of query types
it could see, i.e., worst case ⇥(|C|2|N |

). In this section we
propose simple modification and approximations that consid-
erably reduce the overheads, albeit with some penalty in the
performance. The key idea is to define equivalence classes
of query types that share a ‘similar’ history, in the sense
that they have similar conditional probabilities of resolution,
and have them share a queue. For example, all query types
of class c which have visited the same number of nodes k
might be grouped together, reducing the number of queues
to ⇥(|C||N |) or better. Alternatively we will show one can
further reduce overheads by approximately grouping similar
query types based on their classes c and the cumulative number
of class c files/resources they have seen in nodes in H(⌧),
reducing the number of queues to ⇥(|C|L) where L is a set of
quantization levels. Intuitively such queries have seen similar
opportunities if files/resources are randomely made available
in the network.

Network with random file/resource placement. To better
understand when such aggregation makes sense consider a
network where files/resources are randomly and independently

available at each node, i.e., at the superpeers and/or their
associated subordinate peers. Such independence might make
sense in an unstructured network where resources and sub-
ordinate associations might be ad hoc. Random placement of
files/resources will be modeled as follows. The probability that
node i has resource r 2 Rc is given by ⇢ca,i(r) = �c

i p
c
s(r)

where pcs(r), r 2 Rc is a probability measure capturing the
relative availability of class c file/resource r and �c

i is a
number capturing the willingness of node i to store class
c files/resources. Note ⇢ca,i(r), r 2 Rc is not a probability
measure but we require that �c

i be such that ⇢ca,i(r)  1.
We let pcq(r), r 2 Rc be a probability measure capturing the
likelihood a query of type c is for file/resource r, i.e., in terms
of our ⌫r we have that for all r 2 Rc

pcq(r) =
⌫r

P

s2Rc ⌫s
.

In summary pcq() captures the relative popularity of various
queries for resources in class c, while pcs() captures the
relative availability of various resources of class c and �c

i the
willingness of node i to store class c files/resources. Finally
under this network with random file/resource placements the
average number of class c resources at node i would be

X

r2Rc

⇢ca,i(r) =
X

r2Rc

�c
i p

c
s(r) = �c

i .

Next let us compute ¯p⌧i the probability that a query of type
⌧ is resolved at node i which in this section will be averaged
over random file/resource distributions. Let Rc

j be the random
set of files of class c stored at node j. Thus, the probability
that a query R of type ⌧ is resolved at node i, given that it
could not be resolved at nodes H(⌧) is

¯p⌧i = Pr
�

R 2 Rc
i |R /2 [j2H(⌧)R

c
j

�

=

Pr
�

R 2 Rc
i , R /2 [j2H(⌧)R

c
j

�

Pr
�

R /2 [j2H(⌧)Rc
j

� .

By conditioning with respect to event R = r for each r 2 Rc,
we get

¯p⌧i =

P

r2Rc

Pr (R = r) Pr (R 2 Rc
i |R = r)

⇥Pr
�

R /2 [j2H(⌧)R
c
j |R 2 Rc

i , R = r
�

P

r2Rc Pr (R = r) Pr
�

R /2 [j2H(⌧)Rc
j |R = r

� . (7)

By substituting values for each probabilities we get

¯p⌧i =

P

r2Rc pcq(r)�
c
i p

c
s(r)

Q

j2H(⌧)

�

1� �c
jp

c
s(r)

�

P

r2Rc pcq(r)
Q

j2H(⌧)

�

1� �c
jp

c
s(r)

� . (8)

Note that although this represents an average over network
random file/resource distributions one can show that in a net-
work with large number of files there is a concentration result
where this probability is representative of a given realization
of the random network. Further it is easy to see that if �c

i = �c

for all i then ¯p⌧i is depends solely on the number of nodes in
H(⌧). Thus all queries for class c files/resources that have
visited the same number of nodes can be grouped together.
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One can further roughly approximate the above expression to
obtain

¯p⌧i ⇡
P

r2Rc pcq(r)�
c
i p

c
s(r)

⇣

1� pcs(r)
P

j2H(⌧) �
c
j

⌘

P

r2Rc pcq(r)
⇣

1� pcs(r)
P

j2H(⌧) �
c
j

⌘ . (9)

Note that under this approximation ¯p⌧i is simply a function of
P

j2H(⌧) �
c
j corresponding to the cumulative average number

of files of class c seen at nodes in H(⌧). Thus as proposed in
the sequel one could conceivably aggregate query types which
have seen similar numbers of files in their history and still
roughly capture the correct probabilities of query resolutions
in the network. This would lead to substantial reductions in
complexity.

Realizing backpressure with aggregated types.
Given guidelines on how to aggregate query-types, we now

provide modifications to the backpressure algorithm, needed
to perform well under aggregation.

Assumption 1. For ⌧ such that i 2 H(⌧), p⌧i depends on
H(⌧) only through f(⌧).

Here, f(⌧) could be number of nodes visited or number
of files seen or some other aggregation technique. For now,
we focus on a fully connected network. First, we restrict
nodes from forwarding queries to nodes that they have already
visited, since i 2 H(⌧) implies that p⌧i = 0, revisiting a node
does not help resolve a query, except by possibly finding an
alternate route. Next, we partition T into sets T1, T2, . . . , such
that, each ⌧ 2 T` has exactly same f(⌧) and c(⌧), for each
index `. We call such indices ‘levels’. Let � be set of all
levels `. Now, each node maintains a queue for each ` 2 �.
Let Q0`

i(t) be the total number of queries in level ` waiting
to be served at node i, at the beginning of each slot, and let
Q0

(t) , (Q0`
i(t) : i 2 N , ` 2 �) represent the network’s queue

states in slot t. One important outcome of constraining queries
from revisiting nodes is that the probability of resolution for
all the queries in Q0`

i(t) is the same, say p0`i , since otherwise
revisiting queries will have probability 0. By analogy to the
definition of ei(⌧) and E�1

i (⌧), define  i(`) and  �1
i (`) as,

 i(`) = `0 if 8⌧ 2 T`, ei(⌧) 2 T`0 , and  �1
i (`) is its inverse

set. We now provide our modified backpressure policy.

Back-pressure algorithm with aggregation: Below is a dis-
tributed dynamic stable policy for a fully connected network.
Given Q0

(t) = q0(t), each node i does the following,
1) For each neighbor j, it determines

w⇤
ij(t) = max

`

⇣

q0
`
i(t)� q0

 i(`)
j (t)(1� p0

`
i)

⌘

`⇤ij(t) = argmax

`

⇣

q0
`
i(t)� q0

 i(`)
j (t)(1� p0

`
i)

⌘

.

2) It finds j⇤i = argmaxj w⇤
ij(t) and lets `⇤i = `⇤ij(t) for

j = j⇤i ,
3) It serves a maximum of µi queries from level `⇤i which have
not visited node j⇤i on FCFS basis and forwards the unresolved
queries to node j⇤i . If the total number of such queries is
less than µi, then it serves blank queries for spare services.

Theorem 3. Under Assumption 1 the modified backpressure
algorithm achieves stability for a fully connected network for
any � 2 ⇤0.

The proof of the above theorem is provided in Appendix D.
Note that, as with the basic backpressure policy, the above
modified policy is wasteful and can be made work conserving
along the lines of work conserving version of the basic
backpressure algorithm in Section III-B. Further modifications
are required for the case of a general network topology, since
a case may arise where a query has already visited all the
neighbors of its current node. For such conditions, we present
a simple modification. After deciding on j⇤i and `⇤i , node i

serves not only queries in queue q0
`⇤i
i (t) which have not visited

node j⇤i , but also those queries in q0
`⇤i
i (t) which have visited

all its neighbors on FCFS basis. Such a scheme would perform
well for networks with large enough degree, since cases where
a query has visited all the neighbors would occur rarely.

Quantization based aggregation towards implementation:
The total number of queues can be further lowered signifi-
cantly by aggregating types with coarsely similar f(⌧). For
example, if f(⌧) is the number of files seen, its range can be
quantized into fewer values define a level for each value. Each
node maintains a queue for each of these quantized levels.
Upon arrival of a query, a node checks its f(⌧) (which is
embedded in the query) and appropriately puts it into a queue
associated with the level closest to f(⌧). It then runs the
work conserving backpressure algorithm for aggregation for
the general networks as described above. Since each node can
decide its own levels, queries in a queue of node i may join
different queues when forwarded to node j. Thus, a function
of queue states can be used to compute the weights used by
the algorithm.

Clearly, the above aggregation scheme may result in a reduc-
tion in capacity region, especially if the number of quantization
levels is small. Thus there is an interesting tradeoff between
complexity and the capacity region; we defer the analysis of
such a tradeoff as a possible avenue for future work. Note
that the quantization error is only in deciding the scheduling
and the forwarding policy based on queues; each query-class is
still accurately provided its promised GoS of �c. For this, each
node i, before forwarding a query, updates its embedded ⌧ to
⌧ 0 by adding i to H(⌧) and also updates its embedded �(.)
using �(⌧ 0) = �(⌧) + p⌧i (1� �(⌧)). Also, instead of learning
p⌧i for each ⌧ , nodes can simply learn and store resolution
probability as a function of f(⌧) in a form of look-up table.

C. Alternate grades of service strategies
Till now we provided grade of service based on a priori

probability �(⌧). We provide below, in brief, some alternate
strategies for providing GoS which may be more suited to
some applications. Each strategy is simply a different exit
policy and can be implemented by appropriately modifying
vector p, as was done in Section II.

Fairness to each query: For application where each query
is equally important, including the rare ones, GoS based on
�(⌧) can be unfair to queries which are rare and have lower
demand ⌫r. To see this, notice that in expression (2) for �(⌧),
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the contribution of each each file is weighted by ⌫r. Thus,
files/resources with larger demand will drive �(⌧) to higher
value for a given H(⌧). The actual probability of resolution for
files with lower ⌫r may be lower. This can be rectified by using
a priori probability of resolving a ‘given query’ over given

H(⌧), given as �0(⌧) =

���[j2H(⌧)R
c(⌧)
j

���
|Rc(⌧)| , instead of a priori

probability of resolving a typical query of a ‘given class’,
viz., �(⌧).

Similar to p⌧i , let ✓0⌧i be the probability that a given
query of class c(⌧) is resolved at node i, conditioned on
failing attempts by the nodes in H(⌧). Formally, ✓0⌧i =���Rc(⌧)

i \j2H(⌧){Rc(⌧)\Rc(⌧)
j }

���

|Rc(⌧)
i |

. Using ✓0⌧i , nodes can recursively

update �0(.), using �0(⌧ 0) = �0(⌧) + ✓0⌧i (1 � �0(⌧)), where
⌧ 0 = (c(⌧), H(⌧)[ {i}). However, estimating ✓0⌧i needs more
work than p⌧i . An unbiased estimate of p⌧i is simply the ratio of
the total number of queries of type ⌧ resolved by node i to the
number of such queries that arrived at node i, computing which
does not require keeping track exactly what these queries
where. Estimating ✓0⌧i , however, does require keeping track
of this information, since it’s unbiased estimate is the ratio of
number of distinct queries resolved at node i, to the number of
distinct queries that arrived at node i. Low complexity Bloom
filters can be used to keep track of such information.

Multiple responses for each query: For certain applications,
it may be beneficial to provide multiple responses to the source
generating the query. For example, for applications requiring
downloading a huge file, among the available options, the
client may want to choose the server which is least loaded
or is physically closest. For such applications, one way to
provide GoS in such systems is to set exit strategy based on
�00(⌧), which is a priori expected number of responses for
a query of class c(⌧) from nodes in H(⌧). A query of type
⌧ exits the network if �00(⌧) � �00c(⌧). If ✓00ci is the a priori
probability that a query of class c(⌧) is resolved at node i,
�00(⌧) =

P

i2H(⌧) ✓
00c
i . Further, the probability of resolution

of a query used by back pressure algorithm for such a scheme,
say p00⌧i , is simply the probability that the query of type ⌧ exits
the network. Thus, p00⌧i = 1

n

�00(⌧ 0) � �00c(⌧)

o

1{i 2 H(⌧)},
where ⌧ 0 = (c(⌧), H(⌧) [ {i}).

VI. CONCLUSION

To summarize, we provided a novel, distributed, and re-
liable search policy for unstructured peer-to-peer networks
with super-peers. Our backpressure based policy can provide
capacity gains of as large as 68% over traditional random walk
techniques. We also provided modifications to the algorithm
that make it amenable to implementation.

APPENDIX

A. Proof of Theorem 1
We first prove part (a) of the theorem. Then, we provide

Lemmas 2 and 3. Using these lemmas, we then prove part (b)
of the theorem.

Proof of Theorem 1 part (a): Assume the system is stable
under � with a state dependent randomized policy ⇡(t). Let

X⌧
ij(t) be total number of queries of type ⌧ transmitted on

link (i, j) up to time t under ⇡(t). Let Xs,⌧
ij (t) be the number

of such queries that where resolved at node j, and where thus
removed from the system. Further, let As,c

i (t) be exogenous
arrivals of class c at node i that were successfully resolved at
node i at time t. Thus the following holds for all time, and
all i 2 N .

X

j2N(i),⌧2T

X⌧
ji(t) +

X

c

t
X

t0=1

Ac
i (t

0
)  tµi +

X

⌧2T
Q⌧

i (t+ 1).

(10)
Also, for all i 2 N and ⌧ 2 T ,

X

j2N(i),⌧ 02E�1
i (⌧)

X⌧ 0

ji (t)+
t
X

t0=1

Ac(⌧)
i (t0)1{H(⌧ 0) = ;} = Q⌧

i (t+1)

+

X

j2N(i),⌧ 02E�1
i (⌧)

Xs,⌧ 0

ji (t)+
t
X

t0=1

As,c(⌧)
i (t0)1{H(⌧ 0) = ;}+

X

j

X⌧
ij(t).

(11)

Also, for all (i, j) 2 L and for all ⌧ 2 T ,

X⌧
ij(t) � 0 (12)

Here, (10) follows because total query arrivals at any node
is equal to number of the queries waiting in the queue plus
number of those already serviced. (11) follows because total
queries resolved at any node should be less than or equal
total service provided. We now use the following lemma
from [14], to show that above equations imply that a solution
to constraints (4)-(6) exists.

Lemma 1. If the network is stable, then there exists a finite
value ↵ such that the event Q⌧

i (t)  ↵ 8i, ⌧ occurs infinitely
often.

Thus, there exist some ↵ such that Q⌧
i (t)  ↵ at arbitrarily

large times. Thus, with high probability, one can find a large
enough time ˜t such that, for some ✏ > 0, and for all i 2 N ,
c 2 C and ⌧ 2 T , we get

Q⌧
i (t)  ↵ (13)

↵
˜t
 ✏ (14)

�

�

�

�

�

�

t̃
X

t0=1

Ac(⌧)
i (t0)
˜t

� �c(⌧)i

�

�

�

�

�

�

 ✏ (15)

�

�

�

�

�

Pt̃
t0=1 A

s,c(⌧)
i (t0)
˜t

� p⌧i

Pt̃
t0=1 A

c(⌧)
i (t0)�Q(c(⌧),;)

i (t+ 1)

˜t

�

�

�

�

�

 ✏

(16)

�

�

�

�

�

P

j X
s,⌧
ij (

˜t)

˜t
� p⌧i

P

j X
⌧
ij(

˜t)�Q⌧
i (
˜t+ 1)

˜t

�

�

�

�

�

 ✏ (17)

where (16) and (17) follow from definition of p⌧i and the
law of large numbers. Then, setting f⌧ij(t) = X⌧

ij(t)/t
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and using (13)-(17) with triangle inequality one can show
that resulting variables f (t) are arbitrarily close to satisfying
constraints (4)-(6) at time t =

˜t. Thus, input rates � are
arbitrarily close to ⇤. It is not difficult to show that ⇤ is
compact and thus contains its limit points. Thus, � 2 ⇤.

Lemma 2. For any randomized policy, we have

E

2

4

X

⌧,i

(Q⌧
i (t+ 1))

2 � (Q⌧
i (t))

2
�

�

�

Q(t)

3

5  B� 2

X

⌧,i

Q⌧
i (t)

⇥

0

B

@

µ⌧i (t)�
X

j,⌧ 02E�1
j (⌧)

µ⌧
0

ji(t)(1� p⌧
0

j )� �c(⌧)i 1{H(⌧) = ;}

1

C

A

where B is a constant.

Proof. For a given policy, let F ⌧ij(t) be unresolved queries of
type ⌧ received at j from i at time t. Thus,

E
⇥

F ⌧ij(t)
⇤ 

X

⌧ 02E�1
i (⌧)

µ⌧
0

ij (t)(1� p⌧
0

i ). (18)

The evolution of queues for each type ⌧ at node i can be given
by,

Q⌧
i (t+ 1) = max(Q⌧

i (t)� µ⌧i (t), 0) +
X

j2N(i)

F ⌧ji(t)

+Ac(⌧)
i (t)1{H(⌧) = ;}. (19)

It can be easily checked that the above implies,

(Q⌧
i (t+ 1))

2 � (Q⌧
i (t))

2

 (µ⌧i (t))
2
+

0

@

X

j2N(i)

F ⌧ji(t) +Ac(⌧)
i (t)1{H(⌧) = ;}

1

A

2

�2Q⌧
i (t)

0

@µ⌧i (t)�
X

j2N(i)

F ⌧ji(t)�Ac(⌧)
i (t)1{H(⌧) = ;}

1

A

Summing over all ⌧ and i, we get
X

⌧,i

�

(Q⌧
i (t+ 1))

2 � (Q⌧
i (t))

2
�  B0

(t)� 2

X

⌧,i

Q⌧
i (t)

⇥
0

@µ⌧i (t)�
X

j2N(i)

F ⌧ji(t)�Ac(⌧)
i (t)1{H(⌧) = ;}

1

A (20)

where

B0
(t) =

X

⌧,i

(µ⌧i (t))
2
+

0

@

X

j2N(i)

F ⌧ji(t)

1

A

2

+

X

⌧,i

⇣

Ac(⌧)
i (t)1{H(⌧) = ;}

⌘2
(21)

since
P

j2N(i) F
⌧
ji(t)A

c(⌧)
i (t)1{H(⌧) = ;} = 0 as

F ⌧ji(t)1{H(⌧) = ;} = 0. Here,
P

⌧,i (µ
⌧
i (t))

2 
P

i(µi)
2. Also,

P

⌧,i(
P

j2N(i) F
⌧
ji(t))

2 
⇣

P

⌧,i

P

j2N(i),⌧ 02E�1
j (⌧) µ

⌧ 0

ji(t)
⌘2

 P

i(µi)
2. Further,

P

⌧,i

⇣

Ac(⌧)
i (t)1{H(⌧) = ;}

⌘2
=

P

c,i(A
⌧
i (t))

2. Thus,
E [B0

(t)]  2

P

i(µi)
2
+

P

c,i E
⇥

(A⌧i (t))
2
⇤

, B. Thus, by
talking expectation on both sides of (20), we get,

X

⌧,i

E
⇥

(Q⌧
i (t+ 1))

2 � (Q⌧
i (t))

2
⇤  B � 2

X

⌧,i

Q⌧
i (t)

⇥E

2

4µ⌧i (t)�
X

j2N(i)

F ⌧ji(t)�Ac(⌧)
i (t)1{H(⌧) = ;}

3

5 (22)

from which the lemma follows by using (18).

Lemma 3. Given � 2 ⇤

0, one can obtain a fixed valid
assignment µ(t) = (µ̃⌧ij) (and correspondingly, µ⌧i (t) = µ̃⌧i )
such that, for some ✏⌧i > 0,

µ̃⌧i �
X

j,⌧ 02E�1
j (⌧)

µ̃⌧
0

ji(1�p⌧
0

j )��c(⌧)i 1{H(⌧) = ;} = ✏⌧i 8i, ⌧

Proof. The definition of ⇤ allows for exogenous arrivals �c(⌧)i

only for the types ⌧ such that H(⌧) = ;. We first generalize it
for the hypothetical case where exogenous arrivals are allowed
for all types. Consider generalized arrival rates ˜� = (

˜�⌧i : i 2
N , ⌧ 2 T ).

Definition 3. The generalized capacity region ˜

⇤ is set of
generalized arrival rates ˜�, such that there exists a feasi-
ble solution to the following linear constraints on variables
˜f , (

˜f⌧ij : ij 2 L, ⌧ 2 T ):
1) Capacity constraints: for all i 2 N ,

X

j,⌧

˜f⌧ji +
X

⌧

˜�⌧i  µ̃i (23)

2) Flow conservation constraints with resolution at nodes:
For all i 2 N and ⌧ 2 types,

X

⌧ 02E�1
i (⌧)

(1 � p⌧
0

i )

0

@

X

j

˜f⌧
0

ji +

˜�⌧
0

i

1

A

=

X

j

˜f⌧ij (24)

3) Non-negativity constrants: for all (i, j) 2 L and ⌧ 2 T ,
˜f⌧ij � 0. (25)

Properties of ˜

⇤: a) For each � 2 ⇤, we have a ˜� 2 ˜

⇤ such
that ˜�⌧i = �c(⌧)i 1{H(⌧) = ;}. b) ˜

⇤ is a convex set. c) For
each node i and type ⌧ , consider matrix ¯�⌧i 2 N ⇥ T which
has value 1 only in (i, ⌧)th position, and 0 everywhere else.
For each i and ⌧ , there exist a constant �⌧i > 0 such that
�⌧i ¯�

⌧
i 2 ˜

⇤.
Proof of Properties of ˜

⇤: a) follows from definition of ⇤,
since putting ˜�⌧i = �c(⌧)i 1{H(⌧) = ;} in the constraints for
˜

⇤, satisfies the constraints of ⇤. b) follows from linearity of
constraints of ˜

⇤. c) follows from our description of p, the fact
that the network is connected, and that µi > 0.

Now, consider � 2 ⇤

0. By definition, 9✏ > 0 such that
(1+✏)� 2 ⇤. Using property a), find ˜� such that (1+✏)˜� 2 ˜

⇤,
and ˜� = (�c(⌧)i 1{H(⌧) = ;}). Thus, by convexity of ˜

⇤ and
property c), ˜�+✏0

P

i,⌧ �
⌧
i
¯�⌧i 2 ˜

⇤, where ✏0 = 1
|N ||C| (1� 1

1+✏ ).
Putting ✏⌧i = ✏0�⌧i , we get ˜� + ✏̄ 2 ˜

⇤, where ✏̄ = (✏⌧i ).
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Now, obtain a feasible solution ˜f 0
= (

˜f 0⌧
ij , ij 2 L, ⌧ 2 T )

for constraints (23)-(25) for general arrivals ˜�+ ✏̄, where ˜� =

(�c(⌧)i 1{H(⌧) = ;}). Using this solution, set for all i and ⌧

µ̃⌧i =

X

j

˜f 0⌧
ji + �c(⌧)i 1{H(⌧) = ;}+ ✏⌧i , (26)

and

µ̃⌧ij = µ⌧i
˜f 0ei(⌧)
ij

P

j0
˜f 0ei(⌧)
ij0

. (27)

Note that, this assignment of µ̃⌧ij (and corresponding ⇡⌧ij) is
valid, since from constraint (23) we get

P

j,⌧ µ
⌧
ij  µi for all

i. Using these assignments and constraint (24), and one can
check that,

X

⌧ 02E�1
i (⌧)

(1� p⌧
0

i )µ̃⌧
0

ij =

˜f 0⌧
ij 8i, ⌧. (28)

Putting this in (26), we get

X

j

X

⌧ 02E�1
j (⌧)

µ̃⌧
0

ji(1� p⌧
0

j ) + �c(⌧)i 1{H(⌧) = ;}+ ✏⌧i

= µ̃⌧i 8i, ⌧ (29)

Proof of Theorem 1 part (b): Under a fixed randomized pol-
icy, Q(t) forms a Markov chain. Consider candidate Lyapunov
function L(Q) =

P

i,⌧ (Q
⌧
i )

2. Thus, if we show that drift

�Q(t) , E
h

P

⌧,i(Q
⌧
i (t+ 1))

2 � (Q⌧
i (t))

2
�

�Q(t)
i

is negative
for all but finite set values of Q(t), it would imply that L(Q)

is a Lyapunov function, thus proving that the Markov chain
is positive recurrent, from which stability follows. Lemma 2
provides an upper-bound on �Q(t). Substituting the result of
Lemma 3 in this bound, we get

�Q(t)  B � 2

X

⌧,i

Q⌧
i (t)✏

⌧
i (30)

where B is a constant, and ✏⌧i > 0, 8i, ⌧ . Thus, for the
randomized policy given in Lemma 3, drift �Q(t) is negative
for all but finite Q(t), therefore obtaining stability.

B. Proof of Theorem 2

Before proving Theorem 2, we first provide Lemma 4. We
then use Lemmas 2 and 4 to prove the theorem.

Lemma 4. For the given back pressure algorithm, if � is in
the interior of ⇤, then, for some ✏̄ > 0,

X

⌧,i

Q⌧
i (t)

0

B

@

µ⇤⌧
i (t)�

X

j,⌧ 02E�1
j (⌧)

µ⇤⌧ 0

ji (t)(1� p⌧
0

j )

1

C

A

�
X

⌧,i

Q⌧
i (t)

⇣

�c(⌧)i 1{H(⌧) = ;}+ ✏⌧i

⌘

(31)

Proof. From Lemma 3, there exist a stationary static policy,
that does not depend on Q(t), and determines valid fixed
service rates µ̃⌧ij such that

X

⌧,i

Q⌧
i (t)

0

B

@

µ̃⌧i �
X

j,⌧ 02E�1
j (⌧)

µ̃⌧
0

ji(1� p⌧
0

j )

1

C

A

=

X

⌧,i

Q⌧
i (t)

⇣

�c(⌧)i 1{H(⌧) = ;}+ ✏⌧i

⌘

, (32)

By rearranging terms of L.H.S., we get,

X

⌧,i

Q⌧
i (t)

0

B

@

X

j

µ̃⌧ij �
X

j,⌧ 02E�1
j (⌧)

µ̃⌧
0

ji(1� p⌧
0

j )

1

C

A

=

X

(i,j)2L,⌧

µ̃⌧ij

⇣

Q⌧
i (t)�Qei(⌧)

j (t)(1� p⌧i )
⌘


X

(i,j)2L,⌧

µ̃⌧ijw
⇤
ij(t) 

X

(i,j)2L,⌧

µ⇤⌧
ij (t)w

⇤
ij(t), (33)

where the last inequality follows from the choice of µ⇤⌧
ij (t) by

the back pressure algorithm that maximizes the upper bound
by assigning the entire service rate of µi to a link that has
maximum weight w⇤

ij(t). This also implies,
X

(i,j)2L,⌧

µ⇤⌧
ij (t)w

⇤
ij(t)

=

X

(i,j)2L,⌧

µ⇤⌧
ij (t)

⇣

Q⌧
i (t)�Qei(⌧)

j (t)(1� p⌧i )
⌘

=

X

⌧,i

Q⌧
i (t)

0

B

@

µ⇤⌧
i (t)�

X

j,⌧ 02E�1
j (⌧)

µ⇤⌧ 0

ji (t)(1� p⌧
0

j )

1

C

A

.

(34)

From (32),(33) and (34), the lemma follows.

Proof of Theorem 2: Since the basic backpressure algorithm
is a state dependent randomized policy, Lemma 2 implies that,

E

2

4

X

⌧,i

(Q⌧
i (t+ 1))

2 � (Q⌧
i (t))

2

�

�

�

�

Q(t)

3

5  B� 2

X

⌧,i

Q⌧
i (t)

⇥

0

B

@

µ⇤⌧
i (t)�

X

j,⌧ 02E�1
j (⌧)

µ⇤⌧ 0

ji (t)(1� p⌧
0

j )� �c(⌧)i 1{H(⌧) = ;}

1

C

A

(35)

Note that Q(t) forms a Markov chain for the back pressure
algorithm since µ⇤⌧

ij (t) are a function of Q(t). Thus, again, if
we show that drift �Q(t) is negative for all but finite values of
Q(t), it would imply that L(Q) =

P

i,⌧ (Q
⌧
i )

2 is a Lyapunov
function, thus proving that system is stable. Lemma 4 shows
that the bound on �Q(t) is only more negative compared
to policy used in establishing stability for each � 2 ⇤

0 in
Theorem 1. Thus, from Lemma 4 and (35), we get �Q(t) 
B�2

P

⌧,i Q
⌧
i (t)✏

⌧
i , which is negative for all but finite values

of Q(t).
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C. Proof of Corollary 1

Consider all states of Q(t) such that Q⌧
i (t) � µi, 8i, ⌧ .

For all these states, the work conserving back pressure policy
is equivalent to the basic backpressure algorithm. Thus, from
proof of Theorem 2, if � 2 ⇤

0, the work conserving back
pressure policy has negative drift for all but finite values of
Q(t).

D. Proof of Theorem 3

The proof is along the lines similar to that of Theorem 2.
First, we show that there exist a ‘modified randomized policy’
that depends on Q0

(t) and achieves stability, and then show
that the modified backpressure policy can only do better.

State dependent modified randomized policy: Given that
Q0

(t) = q0(t), under a modified randomized policy, each node
i does the following for each of the µi services, in each slot:

1) It randomly chooses level ` and node j with probability
⇡0`

ij(t).
2) Node i serves a query of level ` which has not visited

node j on FCFS basis. If unresolved, it forwards it to
node j.

3) If no such query is waiting, it serves a blank query.
For ease of notation, define µ0

(t) , (µ0`
ij(t) : (i, j) 2

L, ` 2 �), where, µ0`
ij(t) , µi⇡

0`
ij(t). Thus, determining

⇡0`
ij(t) is equivalent to determining µ0`

ij(t). Further, define
µ0`

i(t) , P

j µ
0`
ij(t) 8i, `. Note that µ0

(t) may be function
of q(t).

Consider constraints (23)-(25). We showed in the proof
of Lemma 3 that a solution to these constraints, say ˜f 0

=

(

˜f 0⌧
ij , (i, j) 2 L, ⌧ 2 T ), exists for any � 2 ⇤

0. For the
case of complete graph, we now show that, for each � 2 ⇤0

we can modify ˜f 0 such that ˜f 0⌧
ij = 0 for all ⌧ such that

j 2 H(⌧). This would basically imply that one can obtain
a stable randomized policy for complete graph that avoids
revisits by queries. Consider any (i, j) and ⌧ such that ˜f 0⌧

ij > 0

and j 2 H(⌧). Note that this also implies that p⌧j = 0 and
p⌧i = 0, since now i is also visited. Assume without loss
of generality, ˜f 0⌧

ij � ˜f 0⌧
ji. (Else, we flip i and j). Now, set

˜f 0⌧
ij =

˜f 0⌧
ij � ˜f 0⌧

ji and then ˜f 0⌧
ji = 0. One can check that

˜f 0 still satisfies the constraints. Now, for all j0 6= i, j, set
˜f 0⌧
ij0 =

˜f 0⌧
ij0 +

˜f 0⌧
jj0 and then set ˜f 0⌧

jj0 = 0 and ˜f 0⌧
ij = 0. One

can again check that ˜f 0 still satisfies the constraints. Repeat
this process for all such pairs of (i, j) and ⌧ . We have thus
obtain a solution ˜f 0 such that ˜f 0⌧

ij = 0 for all ⌧ such that
j 2 H(⌧).

Now, just as in Lemma 3, use the modified ˜f 0 in (26) and
(27) to obtain µ(t) = (µ̃⌧ij) such that, for some ✏⌧i > 0,

µ̃⌧i �
X

j,⌧ 02E�1
j (⌧)

µ̃⌧
0

ji(1�p⌧
0

j )��c(⌧)i 1{H(⌧) = ;} = ✏⌧i 8i, ⌧

(36)

Now, obtain fixed valid assignment µ0
(t) = (

˜µ0`
ij) for the

modified randomized policy by setting ˜µ0`
ij =

P

⌧2T`
µ̃⌧ij . For

this fixed modified randomized policy, we obtain the following

identity by summing both sides of (36) over all ⌧ 2 T` for
each `. For some ✏`i > 0, and for all i 2 N and ` 2 �,

˜µ0`
i �

X

j,`02 �1
j (`)

˜µ0`
0

ji(1 � p0
`0

j ) � �(`)i = ✏`i (37)

where �(`)i = �c(⌧)i for ` 3 ⌧ such that H(⌧) = ;. Note that
our definition of ` provides a seperate level for each such ⌧ .

Now, proceed along the lines of Lemma 2 to obtain the
following, for any modified randomized policy:

E

2

4

X

`,i

(Q0`
i(t+ 1))

2 � (Q0`
i(t))

2
�

�

�

Q0
(t)

3

5  B�2

X

`,i

Q0`
i(t)

⇥

0

B

@

µ0`
i(t)�

X

j,`02 �1
j (`)

µ0`0
ji(t)(1� p0

`0

j )� �(`)i

1

C

A

, (38)

for some constant B.
Note that even under a fixed modified randomized

policy, Q(t) forms a Markov chain (but not
Q0

(t)). Consider candidate Lyapunov function

L0
(Q) =

P

i,`

�

P

⌧2T`
Q⌧

i

�2
=

P

i,`

⇣

Q0`
i

⌘2
. Thus, if we

show that the drift E
h

P

`,i(Q
0`
i(t+ 1))

2 � (Q0`
i(t))

2
�

�Q0
(t)
i

is negative for all but finite set values of Q0
(t), and thus

Q(t), it would imply that L0
(Q) is a Lyapunov function, thus

proving that Markov chain is positive recurrent, from which
stability follows. This is evident by substituting (37) in (38).

Now, observe that the modified backpressure policy is
equivalent to a modified randomized policy with µ0`

ij = µi for
j = j⇤i and ` = `⇤i and 0 otherwise. Now, follow steps along
the lines of proof of Lemma 4 to show that the drift of the
modified backpressure policy is only more negative to above
fixed modified randomized policy, thus proving its stability.
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