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ABSTRACT
We consider multi-class queueing systems where the per
class service rates depend on the network state, fairness cri-
terion, and is constrained to be in a symmetric polymatroid
capacity region. We develop new comparison results lead-
ing to explicit bounds on the mean service time under var-
ious fairness criteria and possibly heterogeneous loads. We
then study large-scale systems with growing numbers of ser-
vice classes n (e.g., files), heterogenous servers m and poly-
matroid capacity resulting from a random bipartite graph
modeling service availability (e.g., placement of files across
servers). This models, for example, a large scale content
delivery network (CDN) supporting parallel servicing of a
download request. For an appropriate asymptotic regime,
we show that the system’s capacity region is uniformly close
to a symmetric polymatroid – i.e., heterogeneity in servers’
capacity and file placement disappears.

Combining our comparison results and the asymptotic
‘symmetry’ in large systems, we study performance robust-
ness to heterogeneity in per class loads and fairness criteria.
Roughly, if each class can be served by cn = !(log n) servers,

the load per class does not exceed ✓n = o
⇣

min( n
logn

, cn)
⌘

,

and average server utilization is bounded by � < 1, then
mean delay satisfies the following bound:
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where K is a constant. Thus, large, randomly configured
CDNs with a logarithmic number of file copies are robust
to substantial load and server heterogeneities for a class of
fairness criteria.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance
of Systems—Modeling techniques; G.2 [Probability and
Statistics]: Queueing theory; H.2.4 [Information Sys-
tems]: Systems—Concurrency
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1. INTRODUCTION
In many shared network systems service rate is allocated

to ongoing jobs based on a fairness criterion, e.g., ↵-fair
(↵F) (including max-min and proportional fair) as well as
Balanced fair (BF), and other Greedy criteria [24]. When
the network loads are stochastic a key open question is how
the choice of fairness and network design will impact user
perceived performance, e.g., job delays, as well as the sensi-
tivity of performance to heterogeneity in network resources
and tra�c loads. Motivated by this challenge in this pa-
per we take a step towards understanding these issues by
investigating performance bounds for an interesting class of
stochastic networks with symmetric polymatroid capacity
under various fairness criteria.

The second question driving this paper is whether large
scale systems can be designed to be inherently robust to
heterogeneity and at what cost? Specifically we consider
a centralized content delivery infrastructure where a collec-
tion of servers store and deliver large files, e.g., scientific
datasets/visualization, 3D videos, software updates, other
immersive technologies, and are aimed at doing so with small
delays. Such centralized infrastructure could, for exam-
ple, be part of a larger distributed content delivery network
(CDN), where requests not currently available at distributed
sites are forwarded to the centralized infrastructure which
in turn delivers the files to the remote sites and/or users.
There has been substantial recent interest in understand-
ing basic design questions for these systems including, see
e.g. [10, 14, 20, 23] and references therein: How should the
number of file copies scale with the demand? What kinds
of hierarchical caching policies are most suitable? How to
best optimize storage/backhaul costs for unpredictable time-
varying demands? Our focus is on CDNs that permit paral-
lel file downloads from multiple servers – akin to peer-to-peer
systems. In principle, with an appropriate degree of storage
redundancy, one can achieve much better peak service rates,
exploit diversity in service paths, produce robustness to fail-
ures, and provide better sharing of pooled server resources.



Intuitively when such systems have su�cient redundancy
they will exhibit performance which is robust to limited het-
erogeneity in demands and server capacity, as well as to the
fairness criterion driving resource allocation. Such systems
might also circumvent the need for, and overheads (such
as backhaul, state update, etc) associated with, dynamic
caching. If this is the case, CDNs enabling parallel servicing
of individual download requests could be more scalable and
robust to serving popular content.

Our Contributions and Organization: The contribu-
tions of this paper are threefold, each of independent in-
terest, and collectively, providing a significant step forward
over what is known in the current literature.

a.) Performance bounds: In Sections 3-4 we consider a class
of systems with symmetric polymatroid capacity for which
we develop several rate allocation monotonicity proper-
ties which translate to performance comparisons amongst
fairness policies, and eventually give explicit bounds on
mean delays. Specifically we show that under homo-
geneous loads the mean delay achieved by Greedy and
↵F rate allocations are bounded by that of BF alloca-
tion which is computable. We then extend this upper
bound to the case when the load is heterogeneous but
‘majorized by a symmetric load’.

b.) Uniform symmetry in large systems: In Section 5 we con-
sider a bipartite graph where nodes represent n job classes
(files) and m servers with potentially heterogenous ser-
vice capacity. The graph edges capture the ability of
servers to serve the jobs in the given classes. If jobs can
be concurrently served by multiple servers then the sys-
tem’s service capacity region is a polymatroid. We show
that for appropriately scaled large system where the edge
set is chosen at random (random file placement) the ca-
pacity region is uniformly close to a symmetric polyma-
troid.

c.) Performance robustness in large systems: By combining
these two results, in Section 6 we provide a simple per-
formance bound for large-scale content delivery systems.
The bound exhibits performance robustness in such sys-
tems with respect to variations in total system load,
heterogeneity in load across the classes, heterogeneity
in server capacities, for ↵-fair based resource allocation.
Specifically it establishes a clear link between the degree
of content replication and permissible demand hetero-
geneity while ensuring performance scalability.

We have endeavored to provide as complete results as pos-
sible, and have deferred details to the appendix. Section 7
concludes the paper.

Related work: There is a substantial amount of related
work. Yet the link between fairness in resource allocation
and job delays in stochastic networks is poorly understood.
The only fairness criterion for which explicit expressions or
bounds are known is the Balanced Fair rate allocation [3]
which generalizes the notion of ‘insensitivity’ of the pro-
cessor sharing discipline in M/G/1 queuing system. Under
balanced fairness, an explicit expression for mean delay was
obtained in [5, 6] for a class of wireline networks, namely,
those with line and tree topologies. Also, a performance
bound for arbitrary polytope capacity region and arbitrary
load was provided in [1]. Similarly [11] developed bounds for

stochastic networks where flows can be split over multiple
paths. These bounds and expressions are either too specific
or too loose. In [22] we developed an expression for the mean
delay for systems with polymatroid capacity and arbitrary
loads under Balanced Fair rate allocations. Unfortunately
the result has exponential computational complexity in gen-
eral. However the symmetric case has low complexity, a fact
we use in the sequel.

Balanced fair rate allocation is defined recursively and is
di�cult to implement. ↵-fair rate allocations [13, 19] which
are based on maximizing a concave sum utility function over
the system’s capacity region – this includes proportional and
max-min fair allocations, are more amenable to implementa-
tion [12,15]. However, the only known explicit performance
results for stochastic networks under such fairness criteria
are for systems where proportional fair is equivalent to bal-
anced fair [3,17]. In [2], performance relationship under bal-
anced and proportional fairness for several systems where
they are not equivalent was studied through numerical com-
putations, and were found to be relatively close in several
scenarios.

In this paper we focus on a class of stochastic networks
that can be characterized by a polymatroid capacity region.
Such systems have also been considered in [22, 24]. For ex-
ample, the work in [24] shows that when such systems are
symmetric with respect to load and capacity, a greedy rate
allocation is delay optimal. However, the result is brittle to
asymmetries. We provide more details on greedy and other
rate allocations in Section 3.

In summary when it comes to fairness criteria and stochas-
tic network performance there is a gap between what is im-
plementable and what is analyzable. One of the goals of this
paper is to provide comparison results which address this
gap, with particular focus on addressing user-performance in
large-scale CDN systems prevalent today. In this setting the
two works closest to this paper are [23] and [22]. Both adopt
a natural model for a CDN-like system based on a bipartite
graph which captures the availability of files at servers to
support the file-download requests. They show that if the
graph is chosen at random and scaled appropriately then
user performance is robust to load heterogeneity. The au-
thors in [23] consider a service model where each request
can be served by a single server without preemption – recall
we consider systems allowing parallel downloads. The flexi-
bility of our service model leads to a significantly improved
mean delay bound and the resulting robustness. For exam-
ple, upon availability of cn servers for each class, the max-

imum per-class load allowed in [23] is o
⇣

q

c
n

logn

⌘

which is

significantly lower than our limit of o
⇣

min( n
logn

, cn)
⌘

. Also

in our work we are able to address the role of fairness criteria
and robustness to heterogeneity in server capacities.

While our service model is similar to that in [22], our work
in this paper is di↵erent in several respects. Firstly, in [22]
we focused on mean delays only for Balanced fair resource
allocation whereas in this paper we directly study the im-
pact of fairness criteria on users’ delays. Secondly, we con-
sider here a di↵erent scaling regime where the number of job
classes (files) n grows proportionally to the number of servers
m. In our earlier work the system was by design symmetric
whereas in this paper we establish the asymptotic symmetry.
Thirdly, in this paper we establish new results on robustness



to limited heterogeneity in file demands, server capacity and
↵-fairness criteria by providing a uniform bound on delays.

2. SYSTEM MODEL
Our system consists of a set F of n classes. Jobs for class

i 2 F arrive as an independent Poisson process of rate �i.
Let � = (�i : i 2 F ). Service requirements of jobs are
i.i.d exponential with mean ⌫. Let ⇢ = (⇢i : i 2 F ), where
⇢i = �i⌫ denotes the load associated with class i.

Let qi(t) denote the set of ongoing jobs of class i at time t,
i.e., jobs which have arrived but have not completed service,
and q(t) = (qi(t) : i 2 F ). Let x(t) = (xi(t) : i 2 F ), where
xi(t) , |qi(t)|, i.e., x(t) captures the number of ongoing jobs
in each class.

We refer to x(t) as the state of the system at time t. Let
X(t) correspond to the random vector describing the state
of the system at time t. We refer to the random process
(X(t) : t � 0) as the state process. For any x(t), let A

x(t)

denote the set of active classes, i.e., the classes with at least
one ongoing job.

Service Model: For any v 2 qi(t), let bv(t) be the rate at
which job v is served at time t. The vector b(t) = (bv(t) :
v 2 [iqi(t)) represents the rates assigned to ongoing jobs
at time t. Within each class we assume that each job is
allocated equal rate, i.e., bv(t) = bu(t) for each u, v 2 qi(t).
If job v arrives at time tav and has service requirement ⌘v,

then it departs at time tdv such that ⌘v =
R td

v

ta
v

bv(t)dt. Thus,

tdv � tav is the delay for job v.
Further, let ri(x

0) be the total rate at which class i jobs
are served at time t when x(t) = x0, i.e., at any time t,
ri(x(t)) =

P

v2q
i

(t) bv(t). Let r(x0) = (ri(x
0) : i 2 F ). We

call the vector function r(.) the rate allocation. Note that
the rate allocation at any time t depends only on the x(t)
and thus can not depend on the residual file sizes of ongoing
jobs.

Polymatroid Capacity Region: We shall consider systems
where rate allocation r(x) for each x are constrained to be
within a polymatroid capacity region C.

Definition 1. We say that C is a polymatroid if it
takes the following form:

C =

(

r � 0 :
X

i2A

ri  µ(A), 8A ⇢ F

)

,

where µ(.) is a set function which satisfies the following prop-
erties:
1) Normalized: µ(;) = 0.
2) Monotonic: if A ⇢ B, µ(A)  µ(B).
3) Submodular: for all A,B ⇢ F ,

µ(A) + µ(B) � µ(A [B) + µ(A \B).

The function µ(.) is called a rank function.

Polymatroids and submodular functions are well studied in
literature, see e.g., [9, 21].

Definition 2. A polymatroid C is a symmetric poly-
matroid if its rank function µ(.) satisfies the following prop-
erty: for each A ⇢ F , we have µ(A) = h(|A|), where h :
Z

+

! R
+

is a non-decreasing concave function.

For a given x, we say r(x) is feasible if r(x) 2 C; when
this is true for all x, we say that the rate allocation r(.) is

feasible. We call C the capacity region of the system. Sym-
metric polymatroid capacity regions appear in several sys-
tems, for example, Gaussian symmetric multi-access chan-
nels [24]. Further, we will see in Section 5 that certain types
of large content delivery networks have approximately sym-
metric polymatroid capacity regions.

Polymatroid capacity regions C have a special property
that for any r 2 C, there exists r0 � r such that r0 2 D ,
{r 2 C :

P

i2F ri = µ(F )} [9, 21]. Also, as evident from the
definition, for any A ⇢ F the set {r 2 C : ri = 0, 8i /2 A}
is also a polymatroid, with a rank function which is the
restriction of µ(.) to subsets of A.

Further, we let

Ĉ ,
(

⇢0 � 0 :
X

i2A

⇢0i < µ(A), 8A ⇢ F

)

, (1)

and will see, Ĉ is the set of loads which are stabilizable for
appropriate rate allocation policies.

Notation for ordering and majorization: In the sequel, we
will rely on notation for ordering and majorization which we
introduce below.

Let I be a finite arbitrary index set. Consider an arbitrary
vector z = (zi : i 2 I). We let z

[1]

� z
[2]

� . . . , z
[|I|]

denote the components of z in decreasing order. We let |z|
denote

P

i2I |zi|. We let ei denote a vector with 1 at the ith

coordinate and 0 elsewhere.
For vectors z and z0 such that zi  z0i for each i 2 I, we

write z  z0 and say that z is dominated by z0.
Below we define majorization (�) which describes how

‘balanced’ a vector is as compared to another vector. In
words, by z � z0 we mean that z is ‘more balanced’ than z0

but they have the same sum. By z �w z0 we mean that z
is ‘more balanced’ and has lower sum than z0. Similarly, by
z �w z0 we mean that z is ‘more balanced’ and has larger
sum than z0.

Definition 3. For vectors z and z0 such that |z| = |z0|
and

Pk
l=1

z
[l] 

Pk
l=1

z0
[l] for each k 2 {1, 2, . . . , |I|}, we say

z is majorized by z0, and denote this as z � z0.
If we have

Pk
l=1

z
[l] 

Pk
l=1

z0
[l] for each k 2 {1, 2, . . . , |I|},

we say z is weak-majorized from below by z0, and denote this
as z �w z0.

Similarly, if we have
Pk

l=0

z
[|I|�l] �

Pk
l=1

z0
[|I|�l] for each

k 2 {0, 1, . . . , |I|�1}, we say z is weak-majorized from above
by z0, and denote this as z �w z0.

The dominance and majorization have an associated stochas-
tic version, defined below.

Definition 4. Consider random vectors Z and Z0. If
there exist random vectors Z̃ and Z̃0 such that Z and Z̃ are
identically distributed, Z0 and Z̃0 are identically distributed,
and Z̃0  Z̃0 almost surely, then we say that Z is stochasti-
cally dominated by Z0, and denote this as Z̃ st Z̃0.

Instead, if Z̃0 �w Z̃0, then we say that Z stochastically
weak-majorized from below by Z0, and denote this as Z̃ �st

w

Z̃0.

In the sequel, it will be useful to introduce following no-
tation. Recall, r(x) = (ri(x) : i 2 F ) is the vector of
rates allocated to various classes. We define r

(k)(.) for each
k 2 {1, . . . , n} as follows: For a given state x, let ik be
the class corresponding to x

[k]. Then, r
(k)(x) = ri

k

(x). In



words, r
(k)(x) is the rate allocated to the class with the kth

largest number of ongoing jobs.
Notation for scaling: Consider sequences of numbers (fn :

n 2 N) and (gn : n 2 N). We say that fn = O(gn) if there
exists a constant k > 0 and an integer n

0

such that for each
n � n

0

, we have fn  kgn. We say that fn = ⌦(gn) if there
exists a constant k > 0 and an integer n

0

such that for each
n � n

0

, we have fn � kgn.
We say that fn = o(gn) if limn!1

f
n

g
n

= 0. Similarly, we

say that fn = !(gn) if limn!1
g
n

f
n

= 0.
Several notations above are borrowed from [16], [24] and

[22].

3. RATE ALLOCATION POLICIES:
A BACKGROUND

There are several possible rate allocation policies, each re-
sulting in potentially di↵erent user-perceived delays. Below,
we introduce three di↵erent policies studied in literature,
each with its own merits.

1) Greedy rate allocation: Roughly, the Greedy rate
allocation policy on a polymatroid capacity region C assigns
the maximum possible rate to the largest queues subject to
the capacity constraints. We denote the Greedy rate alloca-
tion by rG(.) and define it as follows: for each state x, we
let

rG
(k)(x) = µ ({[1], [2], . . . , [k]})� µ ({[1], [2], . . . , [k � 1])

if k 2 {1, 2, . . . , |A
x

|},
= 0 otherwise.

Equivalently, the sum rate assigned to the k largest queues,
namely

Pk
l=1

rG
(l)(x), is equal to µ ({[1], [2], . . . , [k]}). Using

a quadratic Lyapunov function, one can show that Greedy
rate allocation results in a stationary state process if ⇢ 2 Ĉ,
where Ĉ is defined in (1). The Greedy rate allocation for
symmetric polymatroid capacity regions was first studied
in [24] where the following result was shown.

Proposition 1. ([24]) Suppose the capacity region C is a
symmetric polymatroid and the load ⇢ 2 Ĉ is homogeneous,
i.e., ⇢i = ⇢ for each i 2 F . Then the following statements
hold:

1. Let (XG(t) : t � 0) and (X̃(t) : t � 0) be state pro-
cesses under Greedy and an arbitrary feasible rate allo-
cation, respectively. If XG(0) �st

w X̃(0) then XG(t) �st
w

X̃(t) for each t � 0.

2. The mean job delay under Greedy rate allocation is less
than or equal to that under any feasible rate allocation.

Unfortunately, this optimality result for symmetric systems
does not provide any explicit performance characterization
or bound. Further, the result is brittle to heterogeneity in
load or capacity.

2) ↵-fair rate allocation: As introduced in [19], this
policy allocates rates based on maximizing a concave sum
utility function subject to the system’s capacity region. For-
mally, for a given ↵ > 0, the ↵-fair (↵F) rate allocation r↵(.),
can be defined as follows: for each state x, let

r↵(x) =

(

argmax
ˆr2C

P

i2F

x↵

i

r̂1�↵

i

1�↵
for ↵ 2 (0,1)\{1},

argmax
ˆr2C

P

i2F xi log(r̂i) for ↵ = 1.
(2)

This generalizes various notions of fairness across jobs, e.g.,
proportional fair and max-min fair allocations are equivalent
to the ↵-fair policy for ↵ = 1 and ↵ ! 1, respectively [19].
However, for polymatroid capacity regions the following re-
sult has been established.

Proposition 2. ([22]) All ↵-fair rate allocations are equiv-
alent for polymatroid capacity regions.

Further, the stability result in [7] implies that the ↵F rate
allocation results in a stationary state process when ⇢ 2
Ĉ. The ↵-fair rate allocation is attractive in that it it is
amenable to distributed implementation [12, 15] and satis-
fies natural axioms for fairness [13]. Unfortunately, little is
known regarding their performance under stochastic loads.
What has been shown is that for ↵-fair allocations, the per-
formance is sensitive to the distribution of service require-
ments [3]. Thus, it will be hard to make general claims. This
leads us to the Balanced fair rate allocation below.

3) Balanced fair rate allocation: As introduced in [3],
the Balanced fair (BF) rate allocation is ‘insensitive’, i.e.,
performance depends on the job service distribution only
through its mean. Further, as we will see, it is more amenable
to performance analysis under stochastic loads. Formally,
Balanced fair rate allocation rB(.) for a polymatroid capac-
ity region C can be defined as follows, see [3]: for each state
x, we have

rBi (x) =
�(x� ei)

�(x)
, 8i 2 F (3)

where the function � is called a balance function and is
defined recursively as follows: �(0) = 1, and �(x) = 0
8x s.t. xi < 0 for some i, otherwise,

�(x) = max
A⇢F

⇢

P

i2A �(x� ei)

µ(A)

�

. (4)

As shown in [3], (3) ensures the property of insensitivity,
while (4) ensures that r(x) for each x lies in the capacity
region, i.e., the constraints

P

i2A ri(x)  µ(A) are satisfied
for each A. It also ensures that there exists a set B ⇢ A

x

for which
P

i2B ri(x) = µ(B). In fact the BF allocation is
the unique policy satisfying the above properties.

It was shown in [2, 3] that if ⇢ 2 Ĉ, the state process
(XB(t) : t � 0) is asymptotically stationary. Further, under
this condition, its stationary distribution is given by

⇡(x) =
�(x)
G(⇢)

Y

i2A
x

⇢xi

i where G(⇢) =
X

x

0

�(x0)
Y

i2A
x

0

⇢
x0
i

i .

The existence of such an expression for stationary distri-
bution makes balanced fairness amenable for time-averaged
performance analysis, a property we will use extensively in
the sequel. While, in general, BF may result in wasteful re-
source allocation, e.g., BF is not Pareto e�cient for certain
triangle networks studied in [3], for polymatroid capacity re-
gions BF has been shown to be Pareto e�cient which leads
us to following two results.

Proposition 3. ([22]) For polymatroid capacity regions
C, BF rate allocation is Pareto e�cient, i.e.,

P

i2A
x

rBi (x) =
µ(A

x

) for each x.

In [22], the following easily computable exact expression for
mean delay was provided for homogeneous loads.



Proposition 4. ([22]) Consider a system with symmet-
ric polymatroid capacity region C and with homogenous load
⇢ 2 Ĉ, i.e., for all j 2 F we have ⇢j = ⇢. Then, the mean
delay under balanced fair resource allocation to serve the jobs
is given by,

E[DB
⇢ ] =

⌫F̂ (⇢)
F (⇢)

, (5)

where, F (⇢) and F̂ (⇢) can be recursively obtained as follows:

F (⇢) =
n
X

k=0

Fk(⇢), (6)

where, F
0

(⇢) = 1, and for k � 1,

Fk(⇢) =
(n� k + 1)⇢Fk�1

(⇢)
h(k)� k⇢

. (7)

Also,

F̂ (⇢) =
n
X

k=0

k
n
F̂k(⇢), (8)

where, F̂
0

(⇢) = 0, and for k � 1,

F̂k(⇢) =
Fk(⇢) + n�k+1

k
Fk�1

(⇢) + (n�k+1)(k�1)

k
⇢F̂k�1

(⇢)

h(k)� k⇢
.

(9)

An expression for mean delay for a system with an arbitrary
polymatroid capacity region and arbitrary load is also pro-
vided in [22], but has exponential computation complexity.

4. PERFORMANCE BOUNDS
Recall that for each rate allocation policy considered in

Section 3, namely Greedy, ↵F, and BF, the underlying state
process is asymptotically stationary if the load ⇢ 2 Ĉ. Thus
the corresponding mean delays of the system’s jobs are fi-
nite. In this section, we assume that the capacity region C
is symmetric, and develop explicit and easily computable
bounds on the mean delay of jobs in systems with Greedy
or ↵F rate allocation under potentially heterogeneous load
⇢ within a subset of the stability region Ĉ.

Our goal here is to enable performance analysis for a gen-
eral enough class of systems so as to allow us to develop
quantitative and qualitative insights for large-scale systems
prevalent today. For example, the bounds developed be-
low will enable us to later characterize user-performance in
downloading files from heterogeneous (in loads and service
capacities) large-scale content delivery systems supporting
parallel servicing of downloads.

Below we develop performance bounds for the following
three cases:

(i) Homogeneous loads: We provide an upper bound for

mean delay for loads ⇢ 2 Ĉ which are homogeneous
across classes with non-zero entries, i.e., if A is the set
of classes such that ⇢i > 0 for each i 2 A, then ⇢i = ⇢j
for each i, j 2 A.

(ii) Dominance bound: For loads ⇢,⇢0 2 Ĉ such that ⇢  ⇢0

we show that the system with load ⇢ has lower mean
delay than that with load ⇢0. Thus, if ⇢0 is homogeneous
across non-zero entries as described above then we have
an upper bound for mean delay for ⇢ as well, even if ⇢
is heterogeneous.

(iii) Majorization bound: We consider loads ⇢,⇢0 2 Ĉ such
that ⇢ � ⇢0. Further, suppose that ⇢0 is homogeneous
across non-zero entries as described above. Then, we
show that the system with load ⇢ has lower mean delay
than that with load ⇢0.

Using the above majorization bound, we can bound mean
delay for a larger subset of heterogeneous loads as com-
pared to the dominance bound. For example, consider ⇢ =
(⇢, 1

2

⇢, 1

2

⇢). Recall, for symmetric rank functions we have
µ(A) = h(|A|) for each A ⇢ F , where h(.) is concave.
Now, if 1

3

h(3) < ⇢ < 1

2

h(2), then ⇢0 = (⇢, ⇢, 0) is in Ĉ but
⇢00 = (⇢, ⇢, ⇢) is not. Then the majorization bound holds for
⇢ but the dominance bound does not. Further, even if ⇢00 is
in Ĉ, the bound obtained through ⇢0 may be tighter.

The bounds for each case will be obtained through cou-
pling arguments on the corresponding state processes, fol-
lowed by an application of Little’s law.

4.1 Homogeneous Loads
Consider the following set of loads:

BH , {⇢ 2 Ĉ : 9A ⇢ F s.t. ⇢i = ⇢j 8i, j 2 A

and ⇢i = 0 8i 2 F\A}.

Since by Proposition 1 the Greedy rate allocation is delay
optimal for homogeneous loads, for each ⇢ 2 BH one can im-
mediately conclude that the performance of BF as obtained
in Proposition 4 is an upper bound for Greedy. Below we
show that this performance upper bound via BF also holds
for ↵F rate allocation.

To that end we show a coupling result for systems under
↵F and BF rate allocations. In the process, we prove and
use the property that ↵F is more greedy than BF in the
following sense: if the state process corresponding to ↵F is
the same as or more balanced than that of BF, then ↵F
assigns larger rate to bigger queues than BF. This in turn
keeps the state process for ↵F more balanced in the future.
For a proof of the theorem below see the Appendix.

Theorem 1. Consider a system with symmetric polyma-
troid capacity region and load ⇢ 2 BH , i.e., ⇢ is homoge-
neous across classes with non-zero entries. Then the follow-
ing statements hold:

1. Let (X↵(t) : t � 0) and (XB(t) : t � 0) be state pro-
cesses under ↵F and BF rate allocation. If X↵(0) �w

XB(0) then we have X↵(t) �st
w XB(t) for each t � 0.

2. The mean delays for systems with ↵F and BF rate
allocation for load ⇢ 2 BH satisfy the following:

E[D↵
⇢ ]  E[DB

⇢ ].

4.2 Dominance Bounds
The result below maintains that for ↵F and Greedy rate

allocations, if ⇢  ⇢0 then the state process of a system
under load ⇢ is stochastically dominated by that under ⇢0.
The result can be shown using a per class coupling argument,
along with the following per-class rate monotonicity which
is satisfied by both ↵F and Greedy: for each i 6= j we have
ri(x) � ri(x+ ej). We omit the proof for brevity.

Theorem 2. Consider a system with symmetric polyma-
troid capacity region C. The rate allocation r(.) is either ↵F
or Greedy. Let ⇢  ⇢0. Then the following statements hold:



1. Let (X(t) : t � 0) and (X0(t) : t � 0) be state processes
under loads ⇢ and ⇢0. If X(0)  X0(0), then we have
X(t) st X0(t) for each t � 0.

2. The mean delays for systems with loads ⇢ and ⇢0 satisfy
the following:

E[D⇢]  E[D⇢0 ]

Theorem 2 along with Theorem 1 allows us to bound the
mean delay for any load in the following region:

BD , {⇢ 2 Ĉ : 9⇢0 2 BH s.t. ⇢  ⇢0},

or equivalently,

BD ,
⇢

⇢ 2 Ĉ : max
i

⇢i <
h(k)
k

where k = |{i : ⇢i > 0}|
�

.

Theorem 2 implies that for ↵F and Greedy rate allocations,
the mean delay for each load ⇢ 2 BD can be bounded by
that for a corresponding load ⇢0 2 BH , which in turn has an
easily computable bound through Theorem 1. Thus, we get
the following corollary.

Corollary 1. Consider a system with symmetric polyma-
troid capacity region and load ⇢ 2 BD. Let ⇢0 = maxi ⇢i. Let
⇢0 be such that for each i 2 F we have ⇢0i = ⇢0 if ⇢i > 0 and
⇢0i = 0 if ⇢i = 0. Then, mean delays for systems with Greedy
and ↵F rate allocations for load ⇢ satisfy the following:

E[DG
⇢ ]  E[DB

⇢0 ], and E[D↵
⇢ ]  E[DB

⇢0 ].

4.3 Majorization Bounds
The theorem below generalizes the Dominance bound to

provide a mean delay bound for a system with load ⇢ such
that there exists ⇢0 2 BH which satisfies ⇢ � ⇢0.
Its proof is similar to that of Theorem 1, where instead of

relative greediness between rate allocations, we use the fol-
lowing balancing property satisfied by both ↵F and Greedy:
if state x is more balanced than state x0, than the rate al-
location r(.) would provide larger rates to longer queues in
state x as compared to x0, and thus balancing it even further.
For a brief discussion of this property, see the Appendix. We
omit the proof for brevity.

Theorem 3. Consider a system with symmetric polyma-
troid capacity region C. The rate allocation r(.) is either ↵F
or Greedy. Let ⇢,⇢0 2 Ĉ be such that ⇢ � ⇢0 and ⇢0 2 BH ,
i.e., ⇢0 is homogeneous across classes with non-zero entries.
Then the following statements hold:

1. Let (X(t) : t � 0) and (X0(t) : t � 0) be state processes
under loads ⇢ and ⇢0. If X(0) �w X0(0), then we have
X(t) �st

w X0(t) for each t � 0.

2. The mean delays for systems with loads ⇢ and ⇢0 satisfy
the following:

E[D⇢]  E[D⇢0 ]

Theorem 3 above is stronger than Theorem 2 in the sense
that it only requires the condition ⇢ �w ⇢0 instead of ⇢ 
⇢0. However, it is weaker in the sense that it requires ⇢0

to be in BH and that it gives stochastic weak-majorization
of the corresponding state processes instead of stochastic
dominance.
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Figure 1: Graph G(n) = (F (n) [ S(n);E(n)) modeling
the placement of copies of n files across m = dbne
servers with finite service capacities in a CDN-like
infrastructure.

For both rG(.) and r↵(.), Theorem 3, along with Theo-
rem 1 and Proposition 1, allows us to bound the mean delay
for any load in the following region:

BM , {⇢ 2 Ĉ : 9⇢0 2 BH s.t. ⇢ � ⇢0},

or equivalently,

BM ,
⇢

⇢ 2 Ĉ : 9k  n s.t. max
i

⇢i <
h(k)
k

and |⇢| < h(k)

�

.

Theorem 3 implies that for ↵F and Greedy rate allocation,
the mean delay for each load ⇢ 2 BM can be bounded by
that for a corresponding load ⇢0 2 BH , which in turn has an
easily computable bound through Theorem 1. Thus, we get
the following corollary.

Corollary 2. Consider a system with symmetric polyma-
troid capacity region and load ⇢ 2 BM . Let ⇢0 = maxi2F ⇢i.
Let k = min{l : ⇢0  h(l)

l
and |⇢|  h(l)}. Let A be an arbi-

trary subset of F of size k and ⇢0 be such that ⇢0i = ⇢0 8i 2 A
and ⇢0i = 0 otherwise. Then, the mean delays for systems
with Greedy and ↵F rate allocations for load ⇢ satisfy the
following:

E[DG
⇢ ]  E[DB

⇢0 ], and E[D↵
⇢ ]  E[DB

⇢0 ].

It is easy to check that for each ⇢ 2 BM the computation
of the mean delay upper bound as given by Corollary 2 has
complexity O(n) when computed using Proposition 4.

5. UNIFORM SYMMETRY IN LARGE SYS-
TEMS

Large content delivery infrastructure, where servers can
jointly serve file-download requests, not only have polyma-
troid capacity but under appropriate assumptions become
approximately symmetric.

Consider a sequence of bipartite graphs G(n) = (F (n) [
S(n);E(n)) where F (n) is a set of n files, S(n) is a set of
m = dbne servers for some constant b, and each edge e 2
E(n) connecting a file i 2 F (n) and server s 2 S(n) implies
that a copy of file i is available at server s. For each node
s 2 S(n), let N (n)

s denote the set of neighbors of server s, i.e.,
the set of files it stores and can serve. Henceforth, wherever
possible, we will avoid the use of ceil and floor notations to
avoid clutter.

We associate each file in F (n) with a class of job arrivals
each corresponding to a file download request. The arrival



processes and service requirements are as described in Sec-
tion 2, with �(n) and ⇢(n) representing the corresponding
arrival rates and loads. Further, we let the service capacity
of each server s 2 S(n) be µs bits per second.

We allow each server s 2 S(n) to concurrently serve the
jobs with classes N (n)

s as long as the total service rate does
not exceed µs. The service rate for each job is the sum of the
rates it receives from di↵erent servers. For any A ⇢ F (n),
let µ(n)(A) be the maximum sum rate at which jobs with
file-class in A could be served, i.e.,

µ(n)(A) ,
X

s2S(n)

1n

A\N
(n)
s

6=;
oµs.

Clearly any rate allocation r(.) for such a system must
satisfy the following constraints for each state x: 8A ⇢ F (n),

X

i2A

ri(x)  µ(n)(A).

It was shown in [22] that µ(n)(.) is submodular and that
the corresponding polymatroid

C(n) ,
(

r � 0 :
X

i2A

ri  µ(n)(A), 8A ⇢ F (n)

)

is indeed the capacity region for such a system, i.e., each
r 2 C(n) is achievable.

Note that C(n) will in general be an asymmetric polyma-
troid depending upon edges E(n) and service capacities µs

for each s 2 S(n). However, we show below that if copies
of files are stored across servers at random and scaled ap-
propriately with n then, as n increases, C(n) gets uniformly
close to a symmetric polymatroid, subject to the following
assumptions:

Assumption 1 (Heterogeneous server capacities).

S(n) is partitioned into a finite number of groups where each
group has ⌦(n) number of servers. Within each group, the
server capacities are homogeneous. The server capacities
across groups may be heterogeneous such that average of ser-
vice capacity across servers

⇠ , 1
m

X

s2S(n)

µs

is independent of n.

Assumption 2 (Randomized file placement). Let (cn :
n 2 N) be a sequence such that

cn = !(log n).

For each file i 2 F (n), store a copy in cn di↵erent servers
chosen uniformly and independently at random.

A randomized placement of file copies implies a random
system configuration, i.e., a random graph. Let E(n) denote
the random set of edges resulting Assumption 2. Similarly,
for each s 2 S(n), let N (n)

s denote the random set of neigh-
bors of s, i.e., the random set of files stored in server s.
LetM (n)(.) denote the corresponding random rank function,
and µ(n)(.) a possible realization. Then, for each A ⇢ F (n),
we have

M (n)(A) =
X

s2S(n)

1n

A\N (n)
s

6=;
oµs,

where 1n

A\N (n)
s

6=;
o is now a Bernoulli random variable in-

dicating if a copy of at least one of the files in A is placed
in s. In fact, for each A ⇢ F (n) such that |A| = k, the set
⇢

1n

A\N (n)
s

6=;
o : s 2 S(n)

�

is a set of m negatively associ-

ated Bernoulli(p(n)

k ) random variables [8] where p(n)

k is the
probability that a given server is assigned at least one of the
kcn copies of files in A and is given by

p(n)

k , 1�
✓

1� 1
m

◆kc
n

8k = 0, 1, . . . , n.

By linearity of expectation, for each A ⇢ F (n), we have

µ̄(n)(A) , E[M (n)(A)] = ⇠mp(n)

|A| .

Note, µ̄(n)(A) depends on A only through |A| and is thus
symmetric. The theorem below shows that with high prob-
ability we can bound the random rank function M (n)(.) uni-
formly over all A ⇢ F (n), from above as well as from below,
with a symmetric rank function which is close to µ̄(n)(A).
See Section 5.1 for a proof.

Theorem 4. Fix ✏ independent of n such that 0 < ✏ < 1.
Consider a sequence of systems with n files and m = dbne
servers, where b > 0 is a constant. Under Assumptions 1
and 2, let M (n)(.) be the corresponding random rank func-
tion. Then, there exists a sequence (gn : n 2 N) such that
gn = !(log n), and

P
⇣

9A ⇢ F (n) s.t. M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

 e�g
n ,

and

P
⇣

9A ⇢ F (n) s.t. M (n)(A) � (1 + ✏)µ̄(n)(A)
⌘

 e�g
n .

This result gives us following corollary on the random
capacity region associated with M (n)(.) generated by ran-
dom file placement. Recall, µ̄(n)(A) = E[M (n)(A)] for all
A ⇢ F (n), and let

C̄(n) ,
(

r � 0 :
X

i2A

ri  µ̄(n)(A), 8A ⇢ F (n)

)

.

Thus C̄(n) is the (symmetric) capacity region associated with
the average rank function µ̄(.). Then, the following holds:

Corollary 3. Fix ✏ independent of n such that 0 < ✏ <
1. Under Assumptions 1 and 2, the random capacity region
associated with randomized file placement is a subset of (1+
✏)C̄(n) and a superset of (1� ✏)C̄(n) with high probability.

Further, under Assumption 1, there exists a deterministic
file placement where cn = !(log n) copies of each file are
stored across servers such that the corresponding capacity
region C(n) is a subset of (1 + ✏)C̄(n) and a superset of (1�
✏)C̄(n).

5.1 Proof of Theorem 4
Here, we will only show

P
⇣

9A ⇢ F (n) s.t. M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

 e�g
n ,

The other bound follows in similar fashion.
For now, suppose µs = ⇠ for each s 2 S(n). We relax this

assumption later.



We first provide a bound for P
⇣

M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

for each A ⇢ F (n). Then, for each k = 1, 2, . . . , n, we use
the union bound to obtain a uniform bound over all sets
A ⇢ F (n) such that |A| = k. The bound we provide for

P
⇣

M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

is small enough so that the

above union bound is small too. Then, yet another use of
the union bound would give us the uniform result over all
sets A ⇢ F (n).

Now, if the random variables

⇢

1n

A\N (n)
s

6=;
o : s 2 S(n)

�

were independent Bernoulli(p(n)

k ), then the following two
concentration results would hold [18]: Fix k 2 {1, . . . , n}.
For each set A ⇢ F (n) such that |A| = k, we have

P
⇣

M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

 e�
✏

2

2 mp
(n)
k , (10)

and,

P
⇣

M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

 e
�mH

⇣

p
(n)
k

(1�✏)||p(n)
k

⌘

,

(11)
where H(p||q) is the KL divergence between Bernoulli(p)
and Bernoulli(q) random variables, given by

H(p||q) = p log

✓

p
q

◆

+ (1� p) log

✓

1� p
1� q

◆

.

However, in reality, since

⇢

1n

A\N (n)
s

6=;
o : s 2 S(n)

�

are

negatively associated Bernoulli(p(n)

k ) random variables, the
above Cherno↵ bounds still apply [8].

In the sequel, we will use the following two technical lem-
mas. Their proofs are provided in the Appendix A.3.

Lemma 1. Let a sequence (gn : n 2 N) be such that
gn = o(cn). Let �

1

be a positive constant independent of n
such that �

1

< 1. Then, for large enough n, we have

p(n)

k � �
1

gn
n

k 8k 2
⇢

0, 1, . . . ,

�

n
gn

⌫�

.

Lemma 2. There exists a positive constant � such that

H
⇣

p(n)

k (1� ✏)||p(n)

k

⌘

� �� + ✏ kc
n

m
.

Now, let (gn : n 2 N) be a sequence such that gn ,
(cn log n)1/2 for each n. The following properties of gn can
be easily checked:

gn = !(log n) and gn = o(cn). (12)

We now provide a uniform bound over all sets A ⇢ F (n)

such that |A| = k for each k 2 {1, . . . , n}, under following
two cases.

Case 1 0  k  n
g
n

: From Lemma 1, for each k we have

p(n)

k � �
1

kgn
n

,

for a suitably chosen positive constant �
1

independent of n.
In the sequel, �i for any i � 1 will be a suitably chosen
positive constant independent of n.

Using the concentration result (10), for |A| = k we get

P
⇣

M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

 e�
✏

2

2 �1bkgn ,

and using the union bound, we get

P
⇣

9A ⇢ F (n) s.t. |A| = k and M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

 e�
✏

2

2 �1bkgn

 

n
k

!

 e�
✏

2

2 �1bkgn+k logn  e��2kgn .

Case 2 n
g
n

< k  n: In this case, we use the concentration
result (11). From Lemma 2, we get

P
⇣

M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

 e(�6m�✏kc
n

).

Since gn = o(cn), for n large enough we get �
6

m  (✏/2)nc
n

g
n

.

Also, for each k > n
g
n

, we have (✏/2)nc
n

g
n

 (✏/2)kcn. Thus,

for large enough n, �
6

m� ✏kcn  �(✏/2)kcn for each k such
that n

g
n

< k  n, and consequently,

P
⇣

M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

 e��7kcn

By using the union bound, for large enough n, we get

P
⇣

9A ⇢ F (n) s.t. |A| = k and M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

 e��7kcn

 

n
k

!

 e��7kcn+k logn  e��8kcn .

Combining the above two cases, we can show that for large
enough n there exists a positive constant �

9

such that for
each k 2 {1, . . . , n} we have

P
⇣

9A ⇢ F (n) s.t. |A| = k and M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

 e��9gn .

Using the union bound again, we get

P
⇣

9A ⇢ F (n) s.t. M (n)(A)  (1� ✏)µ̄(n)(A)
⌘

 ne��9gn  e��9gn+logn  e��10gn .

Now, we relax the assumption µs = ⇠ for each s 2 S(n)

with Assumption 1. The above proof can then be used to
show a similar concentration result for individual groups.
The overall result follows by linearity of expectation and yet
another use of the union bound.

6. PERFORMANCE ROBUSTNESS
We now combine results from Section 4 and Section 5 to

exhibit performance robustness in large systems. In Sec-
tion 5, we showed that large systems support symmetric
polymatroid capacity regions. This allows us to apply the
performance bounds developed in Section 4 for symmetric
polymatroid capacity regions.

However, there is one more hurdle to overcome before we
can apply our bounds from Section 4. Recall, from Corol-
lary 3, under Assumptions 1 and 2 the random capacity
region contains and is contained by symmetric polymatroids
with high probability. The realizations of the random ca-
pacity region, themselves, may still not be symmetric. We
thus need to show that if the capacity region is bigger then
the corresponding mean delay is smaller when subject to the
same load.



Intuitively, larger capacity regions may imply larger ser-
vice rates for each class, and may thus provide better per-
formance. Although intuitively obvious, such results are not
always straightforward. We show below that such a compar-
ison result indeed holds under the following monotonicity
conditions for rate allocations.

Definition 5 (Monotonicity w.r.t. capacity region). We
say that a rate allocation satisfies monotonicity w.r.t. capac-
ity region if for any state x, the rate allocation per class for
a system with a larger capacity region dominates that with a
smaller one.

Recall, r
i

(x)

x
i

is the rate allocated to each job in class i when
the system is in state x.

Definition 6 (Per-job rate monotonicity). We say that
a rate allocation r(.) satisfies per-job rate monotonicity if the
following holds for all states x and x0 such that x � x0: for

each class i, we have r
i

(x)

x
i

 r
i

(x

0
)

x0
i

. In words, adding jobs

into the system only decreases the rate allocated to each job.

Note that the condition of per-job rate monotonicity is stronger
than that of per-class rate monotonicity used in Section 4.2.
Per-job rate monotonicity was first used in [4] to provide a
comparison result similar to the lemma below. The follow-
ing lemma can be shown to hold through a simple coupling
argument across jobs for arbitrary polymatroid capacity re-
gions.

Lemma 3. Consider systems with arbitrary polymatroid
capacity regions C and C̃ such that C ⇢ C̃. Consider a rate
allocation which satisfies monotonicity w.r.t. capacity region
as well as per-job rate monotonicity. Then, the mean delay
for capacity region C under arbitrary load ⇢ upper bounds
that for capacity region C̃ under the same load.

It is easy to check that ↵-fair rate allocation satisfies per-
job rate monotonicity as well as monotonicity w.r.t. capac-
ity region. Thus, Lemma 3 holds for ↵-fair rate allocation.
However, one can show that Greedy rate allocation may not
satisfy either property for arbitrary polymatroid capacity
regions. This further highlights the brittleness of Greedy
rate allocation to asymmetries. Even for Balanced fair rate
allocation it is not directly clear if the lemma holds. Thus,
henceforth we will only consider ↵-fair rate allocation.

Now we are indeed ready with all the tools required to
exhibit robustness in large scale systems.

Assumption 3 (Load Heterogeneity). We consider a se-

quence of systems where load ⇢(n) for each n is allowed to
be within a set B(n) defined as follows: Consider a sequence
(✓n : n 2 N) such that ✓n = !(1), ✓n = o( n

logn
), and

✓n = o(cn). Also, fix a constant � < 1 independent of n.
For each n:

B(n) ,
⇢

⇢ : max
i2F (n)

⇢i  ✓n and |⇢|  �⇠m

�

.

The condition |⇢|  �⇠m implies that we allow load to in-
crease linearly with system size. Also, since ✓n = !(1), the
condition maxi ⇢i  ✓n implies that we allow load across
servers to be increasingly heterogeneous. The condition
✓n = o( n

logn
) limits the heterogeneity allowed in the system.

Further, the condition ✓n = o(cn) would allow us to claim

stability, and to show that the mean delay of the system
tends to 0 as n increases.

The following is the main result of this section.

Theorem 5. Consider a sequence of systems with n files
F (n) and m = dbne servers S(n), where b is a constant.
For each n, let the total service capacity of servers be ⇠m,
where ⇠ is independent of n. S(n) is partitioned into a finite
number of heterogeneous groups, each with ⌦(n) servers and
equal per-server capacity. Let (cn : n 2 N) be a sequence
such that cn = !(log n). We allow cn copies of each file to
be placed across the servers.

Let the mean service requirement of file-download jobs be
⌫, where ⌫ is independent of n. Let (✓n : n 2 N) be such that

✓n = !(1), but o
⇣

min( n
logn

, cn)
⌘

. Fix a constant � < 1. Let

B(n) = {⇢ : maxi ⇢i  ✓n and |⇢|  �⇠m}. For each n, let
load across file classes be ⇢(n) 2 B(n).

Fix a constant � > 1. Then, there exists an integer n�

such that for each n � n� the following holds: there exists
at least one file placement policy such that the mean delay
for file-download jobs with ↵-fair rate allocation satisfies the
following bound:

E[D(n)]  �
⌫✓n
⇠cn

1
�
log

✓

1
1� �

◆

.

Further, for each n � n�, if the cn copies of each file are
stored uniformly at random across servers, then the above
bound holds with high probability.

6.1 Proof of Theorem 5
We first show the existence of a file placement policy such

that the mean delay bound is satisfied. Without loss of
generality, assume � < 1

�
.

From Corollary 3, and definitions of C̄(n) and µ̄(n)(.), for
large enough n there exists a file placement such that the
corresponding capacity region contains the following sym-
metric polymatroid:

C̃(n) ,
(

r � 0 :
X

i2A

ri  h(n)(|A|), 8A ⇢ F (n)

)

,

where

h(n)(k) , (1/�)⇠m
⇣

1� e�
kc

n

m

⌘

8k = 0, 1, . . . , n.

Thus, from Lemma 3, for ↵-fair rate allocations it is su�-
cient to consider C̃(n). Further, since C̃(n) is monotonic in
cn, it is su�cient to assume that cn = o( n

logn
) since, if it

is not, we can set cn to be equal to
q

n
logn

✓n and all the

assumptions still hold. Thus, henceforth we assume that

cn = o(
n

log n
).

Let ⇠0 , ⇠/�. Thus, we get

h(n)(k) = ⇠0m
⇣

1� e�
kc

n

m

⌘

8k = 0, 1, . . . , n.

Since �⇠m < ⇠0m and ✓n = o(cn), one can check that B(n)

is a subset of C̃(n) for large enough n, and we get stability.

Let tn ,
l

�⇠0m
✓
n

m

. Let A(n) be an arbitrary subset of F (n)

such that |A(n)| = tn. Let ⇢̂(n) = (⇢̂(n)

i : i 2 F (n)) where



⇢̂(n)

i = ✓n if i 2 A(n) and 0 otherwise. Then, it is easy to
show that for each n, we have

B(n) ⇢
n

⇢ : ⇢ �w ⇢̂(n)

o

.

Thus, from Theorem 3, it is su�cient to show that the
bound on mean delay holds for balanced fair rate allocation
under load ⇢(n) = ⇢̂(n).

Henceforth, we assume BF rate allocation and let load
⇢(n) = ⇢̂(n). For each n, we invoke Proposition 4 with ⇢
replaced by ✓n and n replaced by tn, where for each k =
0, 1, . . . , tn we let1

⇡(n)

k , Fk(✓n)
F (✓n)

, and ⌧ (n)

k , F̂k(✓n)
F (✓n)

.

Then, we have

E[D(n)] = ⌫
t
n

X

k=1

k
tn

⌧ (n)

k . (13)

Also, we have ⌧ (n)

0

= 0, ⇡(n)

0

= 1/F (✓n), and for each k =
1, . . . , tn we have

⇡(n)

k =
(tn � k + 1)✓n
h(n)(k)� k✓n

⇡(n)

k�1

, (14)

and

⌧ (n)

k =
⇡(n)

k + t
n

�k+1

k
⇡(n)

k�1

+ (t
n

�k+1)(k�1)

k
✓n⌧

(n)

k�1

h(n)(k)� k✓n
. (15)

First, we show the following result.

Theorem 6. For any positive constants ✏ > 1 and ✏0 < 1
independent of n, there exists a constant �0 < 1 such that
for large enough n we have

✏b log(

1
1��

)

n

c

n

X

k=✏0b log(

1
1��

)

n

c

n

⇡(n)

k � 1� �0
m

c

n . (16)

Proof. Fix a constant 0 < �
11

< 1. Let

k(n)

# =
m
cn

log

✓

1
1� ��

11

◆

.

Then, we have h(n)(k#) = ��
11

⇠0m. In fact, we have h(n)(k) 
��

11

⇠0m, 8k  k(n)

# . Using (14), for each k  k(n)

# , we have

⇡(n)

k � (tn � k + 1)✓n
��

11

⇠0m� k✓n
⇡(n)

k�1

�
tn✓n � (k(n)

# � 1)✓n

��
11

⇠0m
⇡(n)

k�1

=
�⇠0m� o(n)
��

11

⇠0m
⇡(n)

k�1

� 1
�
12

⇡(n)

k�1

,

for a positive constant �
12

such that �
11

< �
12

< 1, and large
enough n. Equivalently, ⇡(n)

k  �
12

⇡(n)

k+1

8k < k(n)

# . Fix a

positive constant ✏
1

< 1. Then, for all k < ✏
1

k(n)

# , we have

⇡(n)

k  �
(1�✏1)k

(n)
#

12

⇡(n)

k
(n)
#

1If ⇡(n)(x) stationary distribution of the queue length pro-

cess for the nth system, then ⇡(n)

k has the following interpre-

tation: ⇡(n)

k =
P

x:|A
x

|=k ⇡
(n)(x) for k = 1, . . . , tn.

Similarly, for a constant �
13

such that � < �
13

< 1, a

constant ✏
2

> 1, and k(n)

" = m
c
n

log
⇣

1

1��/�13

⌘

one can show

that there exists a constant �
14

< 1 such that

⇡(n)

k  �
(✏2�1)k

(n)
"

14

⇡(n)

k
(n)
"

8k > ✏
2

k(n)

"

Thus, we get

1 =
t
n

X

k=0

⇡(n)

k =

✏1k
(n)
# �1

X

k=0

⇡k +

✏2k
(n)
"
X

k=✏1k
(n)
#

⇡(n)

k +
t
n

X

✏2k
(n)
" +1

⇡(n)

k

 (✏
1

k(n)

# )�
(1�✏1)k

(n)
#

12

+

✏2k
(n)
"
X

k=✏1k
(n)
#

⇡(n)

k +
⇣

tn � ✏
2

k(n)

"

⌘

�
(✏2�1)k

(n)
"

14

 n�
(1�✏1)k

(n)
#

12

+ n�
(✏2�1)k

(n)
"

14

+

✏2k
(n)
"
X

k=✏1k
(n)
#

⇡(n)

k

= �
�15

m

c

n

�log

�12
n

12

+ �
�17

m

c

n

�log

�14
n

14

+

✏2k
(n)
"
X

k=✏1k
(n)
#

⇡(n)

k ,

for suitably chosen positive constants �
15

, and �
17

. Thus,
the theorem follows by noting that ✏

1

, ✏
2

, �
11

, and �
13

can be
chosen arbitrarily close to 1.

We now use (15) to provide a slightly simpler bound on ⌧ (n)

k .

Lemma 4. For large enough n, we get,

⌧ (n)

k  (tn � k + 1)✓n
h(n)(k)� k✓n

✓

1
k
⇡(n)

k�1

+
k � 1
k

⌧ (n)

k�1

◆

,

for each k = 1, . . . , tn.

Proof. Using (14) in (15), we get

⌧ (n)

k =

0

B

B

@

(tn � k + 1)✓n
h(n)(k)� k✓n

⇡(n)

k�1

+
tn � k + 1

k
⇡(n)

k�1

+
(tn � k + 1)(k � 1)

k
✓n⌧

(n)

k�1

1

C

C

A

h(n)(k)� k✓n

=
(tn � k + 1)✓n
h(n)(k)� k✓n

 

✓

1

h(n)(k)� k✓n
+

1
k✓n

◆

⇡(n)

k�1

+
k � 1
k

⌧ (n)

k�1

!

.

Now, we have the lemma if we show that for large enough

n, we have
⇣

1

h(n)
(k)�k✓

n

+ 1

k✓
n

⌘

 1

k
for each k = 1, . . . , tn.

This can be shown as follows.
One can show that Lemma 1 holds even when p(n)

k =

1 � e�
kc

n

m . Using gn = ✓
n

�⇠0b , we get h(n)(k) = ⇠0bnp(n)

k �
�20
�
k✓n for large enough n and some constant �

20

such that

� < �
20

< 1. Thus, (h(n)(k) � k✓n) � ( �20
�

� 1)k✓n. For

large enough n, ( �20
�

�1)✓n � 2, and thus, (h(n)(k)�k✓n) �
2k. Similarly, for large enough n, k✓n � 2k. Hence the
lemma.



Following lemma provides an even simpler bound on ⌧ (n)

k .

Lemma 5. For large enough n, we get,

⌧ (n)

k  ⇡(n)

k

for each k 2 {1, . . . , tn}.

Proof. Fix n large enough such that the bound in Lemma 4
holds. We prove the result using induction on k. Consider
the base case of k = 1. From Lemma 4 and (14) we have

⌧ (n)

1

 (tn � 1 + 1)✓n
h(n)(1)� ✓n

⇡(n)

0

= ⇡(n)

1

.

Now, let us assume that the lemma holds for k = k0�1, i.e.,
⌧ (n)

k0�1

 ⇡(n)

k0�1

. Using this, we show below that the lemma
holds for k = k0 as well.

From Lemma 4 and induction hypothesis we have

⌧ (n)

k0  (tn � k0 + 1)✓n
h(n)(k0)� k0✓n

✓

1
k0 ⇡

(n)

k0�1

+
k0 � 1
k0 ⇡(n)

k0�1

◆

= ⇡(n)

k0 ,

where the last equality follows from (14). Hence, the lemma.

Using above lemma and (13), we get

E[D(n)]  ⌫
t
n

X

k=1

k
tn

⇡(n)

k .

Or equivalently,

1
⌫
E[D(n)] =

✏b log(

1
1��

)
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c

n

X

k=1

k
tn

⇡(n)

k +
t
n

X

k=✏0b log(

1
1��

)

n

c

n

+1

k
tn

⇡(n)

k .

We now use Theorem 6 to prove the main result. From
Theorem 6, we have

1
⌫
E[D(n)] 

✏b log(

1
1��

)

n
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n

X

k=1

k
tn

⇡(n)
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 ✏b log

✓

1
1� �

◆

n
cntn

✏b log(

1
1��
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c
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 ✏ log
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1
1� �

◆
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�⇠0cn

+ �0
m

c

n ,

where in last inequality we used definition of tn. The first
part of the theorem thus follows from definition of ⇠0, and
the fact that ✏ and �0 where chosen arbitrarily.

Further, from Corollary 3, upon randomly placing cn copies
of each file, the associated random capacity region contains
C̃(n) with high probability. Hence, the second part follows
as well.

7. CONCLUSIONS
Our main conclusions address both practical and theoret-

ical aspects associated with such systems. CDN systems ad-
dress potential high demands by maintaining multiple copies
of content – server diversity. At the same time there has been
increasing interest in adopting multipath transport protocols
to improve reliability and throughput. Our results show that
infrastructure combining multipath transport with server di-
versity scales well even when subject to substantial vari-
ations in per file demands. Specifically, if CDN capacity

(servers) scale with total load, and memory per server is
proportional to worst case per file demand variability then
average download delays will scale, i.e., are asymptotically
negligible. This suggests a scalable approach towards ad-
dressing the delivery of popular content without requiring
complex caching strategies.

On the theoretical side we have established: (1) basic new
results linking fairness in resource allocation to delays and
(2) the asymptotic symmetry of randomly configured large-
scale systems with heterogenous components. Together these
results suggest large systems might eventually be robust to
heterogeneity and fairness criterion.
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APPENDIX
A.1 Proof of Theorem 1

Consider the following lemma regarding relative greedi-
ness of ↵F and BF.

Lemma 6. Consider states x and y such that x �w

y. For each k such that
Pk

l=1

x
[l] =

Pk
l=1

y
[l], we have

Pk
l=1

r↵
(l)(x) �

Pk
l=1

rB
(l)(y).

Roughly, it asserts that if state x is same or more balanced
than state y, then the sum rate assigned to larger queues
by ↵F to state x is greater than that by BF to state y.
Proof of this lemma is summarized in A.2. Below, we pro-
vide a detailed coupling argument showing stochastic weak-
majorization using this lemma.
Coupling Argument:Without loss of generality, assume

⌫ = 1. Suppose X↵(0) �w XB(0). Below, we couple the
arrivals and departures of processes (X↵(t) : t � 0) and
(XB(t) : t � 0) such that their marginal distributions re-
main intact and X↵(t) �w XB(t) almost surely for each
t � 0.

Let ⇧a be a Poisson point process with rate
P

i2F �i,
and let ⇧d be Poisson point process with rate µ(F ). The
points in these processes are the times of ‘potential events’
in (XB(t) : t � 0) and (X↵(t) : t � 0). We use ⇧a to couple

arrivals and ⇧d to couple departures. For each time t0 when
a potential event occurs, let ✏t0 be a small enough number
such that no potential event occurred in the time interval of
[t0 � ✏t0 , t

0).
Coupling of arrivals: For each point t0 in ⇧a, do the

following: Choose a random variable Zt0 independently and
uniformly from {1, . . . , n}. Let an arrival occur in (X↵(t) :
t � 0) at time t0 in the Zth

t0 largest queue of X↵(t0�✏t0). Ties
are broken uniformly at random. Similarly, let an arrival
occur in (X↵(t) : t � 0) at time t0 in the Zth

t0 largest queue
of X↵(t0� ✏t0). Again, ties are broken uniformly at random.

Coupling of departures: For each point t0 of increment
in ⇧d, do the following: Choose a random variable Zt0 inde-
pendently and uniformly from interval (0, µ(F )]. For k such
that

Zt0 2
 

k�1

X

l=1

r↵
(l)(X

↵(t0 � ✏t0)),
k
X

l=1

r↵
(l)(X

↵(t0 � ✏t0))

#

,

let a departure occur in (X↵(t) : t � 0) at time t0 in the kth

largest queue of X↵(t0� ✏t0), with ties broken uniformly and
independently at random.

Similarly, for k such that

Zt0 2
 

k�1

X

l=1

rB
(l)(X

B(t0 � ✏t0)),
k
X

l=1

rB
(l)(X

B(t0 � ✏t0))

#

,

let a departure occur in (XB(t) : t � 0) at time t0 in the
kth largest queue of XB(t0� ✏t0), with ties broken uniformly
and independently at random. Note that in both cases it is
possible that no such k exists since some classes may not be
active and the total service rate may be less than µ(F ). In
that case, no departure occurs.

It can be checked that the marginal distributions of (X↵(t) :
t � 0) and (XB(t) : t � 0) remain intact. We now show that
X↵(t) �w XB(t) almost surely for each t.

It is easy to check that if an arrival occurred at time t0 and
if X↵(t) �w XB(t) for each t < t0, then X↵(t0) �w XB(t0)
as well. We now show that the same holds for points of ⇧d

as well.
Suppose a potential departure occurred at t0, andX↵(t) �w

XB(t) for each t < t0. We show below that
Pk

l=1

X↵
[l](t

0) 
Pk

l=1

XB
[l](t

0) for each k. Here, we use Lemma 6. Following
two cases arise.

Case 1:
Pk

l=1

X↵
[l](t

0 � ✏t0) <
Pk

l=1

XB
[l](t

0 � ✏t0). A maxi-

mum of one departure occurs at time t0 in either processes.
Thus we have

Pk
l=1

X↵
[l](t

0) 
Pk

l=1

XB
[l](t

0).

Case 2:
Pk

l=1

X↵
[l](t

0 � ✏t0) =
Pk

l=1

XB
[l](t

0 � ✏t0). By using

X↵(t � ✏t0) �w XB(t � ✏t0) in Lemma 6 and from the def-
inition of the coupling at time t0, it can be shown that
if a departure occurs from any of the k largest queues in
XB(t0�✏t0), then it also occurs in one of the k largest queues
in X↵(t0 � ✏t0). Thus,

Pk
l=1

X↵
[l](t

0) 
Pk

l=1

XB
[l](t

0).
Hence the result.

A.2 Relative greediness and other rate

allocation properties

Below, we outline a proof of Lemma 6 which asserts that
↵F is more greedy than BF. Along the way, we develop sev-
eral other properties of the rate allocation policies.

Proof of Lemma 6 stems on the following two fundamental
properties of per-job rate assignment for ↵F and BF.



1.) ↵F gives the most balanced per-job rate allocation: The
property follows from the fact that ↵F is equivalent to max-
min fair rate allocation, see Proposition 2. Formally, this
property implies the following:

Lemma 7. Let b↵ represent a vector of rates assigned
to a set of flows under ↵F rate allocation. Let b̃ be the rates
assigned to the same set of flows under any other feasible
rate allocation. Then, b↵ �w b̃, i.e., weak majorized from
above.

2.) In ↵F and BF, the longest queues have smaller per-job
rates: For ↵F, this property again follows from the fact that
it is equivalent to max-min fair, and that the capacity region
is convex and symmetric. For BF, the proof for this prop-
erty is technical and we omit its discussion here for brevity.
Formally, this property implies the following:

Lemma 8. ↵F and BF rate allocations satisfy the fol-
lowing property for any state x: if xi > xj then r

i

(x)

x
i


r
j

(x)

x
j

.

Now, let us study what the above properties imply for
per-class rate allocation. Consider a state x. Lemma 8
above implies that the most disadvantaged jobs are the ones
which belong to longest queues for both, BF and ↵F. This,
along with Lemma 8, implies that ↵F provides larger rate
to longest queues. Thus we get the following property.

3.) ↵F gives larger rate to the longest queues as compared
to BF: Formally, this property implies the following:

Lemma 9. For any state x,
Pk

l=1

r↵
(l)(x) �

Pk
l=1

rB
(l)(x)

for each k 2 {1, 2, . . . , n}.

Now, we focus on ↵F and study how it allocates rates
across classes for states x and y such that x � y. Intu-
itively, jobs in longer queues in state y are more constrained
than those in x. Again using the fact that ↵F is equivalent
to max-min fair, the most constrained jobs in state y have
smaller rate than those in state x. By monotonicity of ↵F,
this holds even when x �w y. When translated to per-class
rate allocation in states x and y, this argument leads us to
the following property:

4.) ↵F gives larger rate to longer queues in more balanced

states: Formally, this property implies the following:2

Lemma 10. Consider states x and y such that x �w

y. For each k such that
Pk

l=1

x
[l] =

Pk
l=1

y
[l], we have

Pk
l=1

r↵
(l)(x) �

Pk
l=1

r↵
(l)(y).

Finally, we are ready to study relative greediness of ↵F
and BF.

5.) ↵F is more greedy than BF: We now prove Lemma 6.
Consider states x and y such that x �w y. From Lemma 10
we have

Pk
l=1

r↵
(l)(x) �

Pk
l=1

r↵
(l)(y), and from Lemma 9 we

have
Pk

l=1

r↵
(l)(y) �

Pk
l=1

rB
(l)(y). Hence, Lemma 6 holds.

A.3 Technical Lemmas for proof of

Theorem 4

Lemma 1. Let a sequence (gn : n 2 N) be such that
gn = o(cn). Let �

1

be a positive constant independent of n

2This property is also used to prove Majorization bound de-
scribed in Section 4.3. Also, one can check that this property
is satisfied by Greedy rate allocation as well.

such that �
1

< 1. Then, for large enough n, we have

p(n)

k � �
1

gn
n

k 8k 2
⇢

0, 1, . . . ,

�

n
gn

⌫�

.

Proof. Consider a sequence of functions
⇣

f (n)(.)
⌘

n�1

where for each n, f (n)(t) = 1 � (1 � 1/(bn))tcn for each
t 2 R

+

. Then,

f (n) (n/gn) = 1� (1� 1/(bn))
nc

n

g

n

n!1�! 1.

Thus, there exists an integer n0 such that f (n) (n/gn) � �
1

for all n � n0. Also, f (n)(0) = 0 for each n. Using concavity
of f (n)(.), for each n � n0 we have

f (n) (t) � f (n) (n/gn)
(n/gn)

t, 8t s.t. 0  t  n/gn.

Hence, the lemma.

Lemma 2. There exists a positive constant � such that

H
⇣

p(n)

k (1� ✏)||p(n)

k

⌘

� �� + ✏ kc
n

m
.

Proof. From definition,

H
⇣

p(n)

k (1� ✏)||p(n)

k

⌘

= p(n)

k (1� ✏) log(1� ✏)

+ (1� p(n)

k (1� ✏)) log

 

1� p(n)

k (1� ✏)

1� p(n)

k

!

Here, the term p(n)

k (1�✏) log(1�✏), while negative, is greater
than (1 � ✏) log(1 � ✏), a constant. Similarly, the term

(1 � p(n)

k (1 � ✏)) log
⇣

1� p(n)

k (1� ✏)
⌘

is negative, but can

be upper-bounded by a constant as follows:

(1�p(n)

k (1�✏)) log
⇣

1� p(n)

k (1� ✏)
⌘

� log
⇣

1� p(n)

k (1� ✏)
⌘

� log(1� (1� ✏)) = log ✏

Thus, we have

H
⇣

p(n)

k (1� ✏)||p(n)

k

⌘

� �� + (1� p(n)

k (1� ✏)) log

 

1

1� p(n)

k

!

� �� + (1� (1� ✏)) log

 

1

1� p(n)

k

!

= �� + ✏ log

 

1

1� p(n)

k

!

� �� + ✏
kcn
m

,

where in the last inequality we used the fact that 1� p(n)

k 
e�

kc

n

m .


